首页|基于YOLOv4-Tiny结构的小目标实时检测优化算法

基于YOLOv4-Tiny结构的小目标实时检测优化算法

扫码查看
文章针对小目标实时检测的实际应用需求,以YOLOv4-Tiny结构为基本框架,使用ECANet重新设计Mo-bileNetV3的Bneck结构并替换主特征提取网络CSPDarkNet53-Tiny,以提高模型的深度和检测速度;通过在其主干网络输出接口后增加SPPCSPC模块和使用路径聚合网络(PAN)替换特征金字塔(FPN),增强模型的感受野,汇聚多区域上下文信息,使每个特征层得到更加充分的语义信息和位置信息;在Head后融入CBAM注意力机制,增强有用信息并抑制无用信息,提高模型的检测精度.以口罩佩戴状态实时监测来验证提出的算法,实验结果表明,与YO-LOv4-Tiny结构相比,该算法平均精度提升4.13%,达到91.84%,FPS提升4.4 frame/s,达到89.5 frame/s,满足口罩佩戴状态检测的实时性要求.
Optimization Algorithm for Real-Time Detection of Small Targets Based on YOLOv4-Tiny Structure
Targeting the practical application requirements of real-time detection of small targets,the Yolov4-Tiny net-work is taken as the basic framework,the ECANet is used to redesign the Bneck structure of MobileNetV3 and the main feature extraction network CSPDarkNet53-Tiny is replaced,to improve the depth and detection speed of the model;the depth and detection speed of the model is enhanced by adding the SPPCSPC module to the output interface of its back-bone network after the SPPCSPC module and replacing the feature pyramid(FPN)with a path aggregation network(PAN)to enhance the sensory field of the model and aggregate multi-region contextual information to get more adequate semantic and location information for each feature layer;and the CBAM attention mechanism is incorporated after the Head to enhance the useful information and inhibit the useless information to improve the detection accuracy of the model.The proposed algorithm is verified by real-time monitoring of mask wearing state,and the experimental results show that compared with YOLOv4-Tiny algorithm,the average accuracy of the proposed algorithm improves by 4.13%to 91.84%,and the FPS improves by 4.4 frame/s to 89.5 frame/s,which meets the real-time requirements of mask wearing state detection.

YOLOv4-Tiny structureBneck structureSPPCSPC modulepath aggregation networkCBAM attention mechanism

于海洋、张钊、吕瑞宏

展开 >

沈阳工业大学信息科学与工程学院,辽宁 沈阳 110870

YOLOv4-Tiny结构 Bneck结构 SPPCSPC模块 路径聚合网络 CBAM注意力机制

辽宁省教育厅研究项目

LQGD2020021

2024

海军航空大学学报
海军航空工程学院科研部

海军航空大学学报

CSTPCD
影响因子:0.279
ISSN:
年,卷(期):2024.39(4)
  • 8