首页|基于时空特征融合的TCNformer船舶航迹长期预测

基于时空特征融合的TCNformer船舶航迹长期预测

扫码查看
船舶轨迹预测在多种海事任务中发挥着重要的作用,虽已提出了多种时序模型解决航迹预测的问题,但船舶轨迹固有的异构型和多模式仍然面临诸多挑战,且在轨迹长期预测任务中存在较高的预测误差.针对船舶轨迹长期预测的实际应用需求,设计了1种新的AIS数据离散高维表示方法和1种新的损失函数,并将预测问题建模为分类问题,结合时间卷积网络(Temporal Convolutional Network,TCN)和Transformer模型搭建了1种新的模型,称为TCNformer,利用融合的时间维度特征和空间维度特征,通过有效捕捉AIS数据的长期依赖性,预测未来几个小时船舶位置.在公开的AIS数据集上的测试表明,所提方法相较于其他时序模型预测性能提升2倍,最长预测时间范围延长约3.8倍,满足船舶航迹长期预测的要求.
Long Term Prediction of Ship Trajectories Using TCNformer Based on Spatiotemporal Feature Fusion
Ship trajectory prediction plays an important role in various maritime applications.Although multiple time se-ries models have been proposed to solve the problem of trajectory prediction,the inherent heterogeneity and multimodal-ity of ship trajectories still pose many challenges,and there are high prediction errors in long-term trajectory prediction tasks.In response to the practical application needs of long-term prediction of ship trajectories,a new discrete high-dimensional representation of AIS data and a new loss function are designed to model the prediction problem as a classifi-cation problem.A new model called TCNformer is constructed by combining temporal convolutional network(TCN)and transformer network,which effectively captures the long-term dependencies of AIS data using fused temporal and spatial features,to predict the position of the ship in the coming hours.The performance of the proposed model is tested on a pub-licly available AIS dataset.Compared to other time series models,the predictive performance is improved by 2 times,and the longest prediction time range is extended by about 3.8 times,meeting the requirements for long-term prediction of ship trajectories.

long term trajectory predictionTCN networktransformer networkintegration of spatiotemporal featuresAIS data

高龙、吴俊峰、杨柱天、徐从安、冯忠明、陈佳炜

展开 >

海军航空大学,山东 烟台 264001

哈尔滨工业大学,黑龙江 哈尔滨 150000

哈尔滨工程大学,黑龙江 哈尔滨 150000

航迹长期预测 时间卷积网络 Transformer模型 时空特征融合 AIS数据

国家自然科学基金面上项目青年人才托举工程

622714992020-JCJQ-QT-011

2024

海军航空大学学报
海军航空工程学院科研部

海军航空大学学报

CSTPCD
影响因子:0.279
ISSN:
年,卷(期):2024.39(4)
  • 6