首页|基于全局及局部优势特征融合的遥感图像去雾方法

基于全局及局部优势特征融合的遥感图像去雾方法

Remote Sensing Image Dehazing Method Based on Global and Local Advantageous Feature Fusion

扫码查看
由于大气中颗粒物质的散射和吸收,遥感图像通常存在细节模糊、对比度降低等问题,严重影响其视觉质量.针对这些问题,文章提出了1种基于全局及局部优势特征融合的遥感图像去雾方法.首先,利用暗通道先验对原始图像进行去雾预处理;然后,采用多曝光融合策略以及积分和平方积分方法整合图像区域的优势特征信息,提升全局及局部对比度;最后,通过金字塔融合自适应选择全局及局部对比度增强的显著特征,以获得清晰化图像.实验结果表明,该方法在遥感图像去雾领域优于其他方法,处理后的图像在黑暗区域曝光、全局对比度增强及局部细节提升等方面表现出了良好的性能.
Due to the scattering and absorption of particulate matter in the atmosphere,remote sensing images often suffer from problems such as blurred details and reduced contrast,which seriously affect their visual quality.To address these is-sues,a remote sensing image dehazing method based on the fusion of global and local advantages features is proposed.Specifically,the dark channel prior is employed to haze removal preprocessing on the raw image.Subsequently,a multi-exposure fusion strategy and integration methods such as integral and square integral is utilized to combine dominant fea-ture information from image regions,enhancing global and local contrast.Finally,a pyramid fusion approach is employed to adaptively select salient features to enhance global and local contrast,resulting in a clarified image.The experimental results show that the proposed method outperforms other methods in remote sensing image dehazing,and the processed image exhibits good performance in terms of dark region exposure,global contrast enhancement,and local detail enhance-ment.

remote sensing image dehazingdark channel priorpyramid fusioncontrast enhancement

刘庆敏、冯贺阳、王中、李童、张卫东

展开 >

河南科技学院信息工程学院,河南 新乡 453003

河南科技学院计算机应用研究所,河南 新乡 453003

河南科技学院计算机科学与技术学院,河南 新乡 453003

遥感图像去雾 暗通道先验 金字塔融合 对比度增强

河南省自然科学基金河南省科技攻关项目河南省教师教育课程改革研究项目国家级大学生创新训练计划国家级大学生创新训练计划

2323004204282421022100752024-JSJYYB-099202310467031202310467015

2024

海军航空大学学报
海军航空工程学院科研部

海军航空大学学报

CSTPCD
影响因子:0.279
ISSN:
年,卷(期):2024.39(4)
  • 5