首页|数据恶劣条件下的辐射源个体识别方法综述

数据恶劣条件下的辐射源个体识别方法综述

扫码查看
文章分析对比了数据恶劣条件下的辐射源个体识别方法.总结了包括不平衡、错误标签、小样本和弱标注4种情况下的个体识别方法,探讨了辐射源特征提取方法的优点和局限性,对方法中作为技术关键和难点的特征提取方法进行了概括,并指出深度学习在深度特征提取上的优势,以及在辐射源个体识别领域所具有的广泛应用前景,以期对各种情况下的辐射源个体识别方法做出较为全面的补充.
Overview of Individual Identification Methods for Radiation Sources Under Harsh Data Conditions
Individual identification methods for radiation sources under harsh data conditions are analyzed and compared.Individual recognition methods including imbalance,mislabeling,small samples,and weak labeling are summarized,the advantages and limitations of radiation source feature extraction methods are explored,the key and difficult feature extrac-tion methods in the methods are summarized,and the advantages of deep learning in deep feature extraction and its broad application prospects in the field of radiation source individual recognition are pointed out,with a view providing a com-prehensive supplement to individual identification methods for radiation sources in various situations.

individual identification for radiation sourcesimbalance identificationsmall sample identificationmislabe-ingweak labelingdeep learning

闫文君、段可欣、凌青、李春雷、黄丽

展开 >

海军航空大学,山东 烟台 264001

91422部队,山东 烟台 265200

92038部队,山东 青岛 266109

海军指挥学院,江苏 南京 210001

展开 >

辐射源个体识别 不平衡识别 小样本识别 错误标签 弱标注 深度学习

国家自然科学基金面上项目电磁空间安全全国重点实验室开放基金

62371465

2024

海军航空大学学报
海军航空工程学院科研部

海军航空大学学报

CSTPCD
影响因子:0.279
ISSN:
年,卷(期):2024.39(5)
  • 17