首页|基于人工神经网络的农用拖拉机NOx排放预测模型研究

基于人工神经网络的农用拖拉机NOx排放预测模型研究

扫码查看
准确预测NOx实际工况排放对于控制区域污染物排放具有重要意义。文章以拖拉机为研究对象,采用车载排放测试系统对拖拉机在实际作业工况下的NOx排放进行测试。通过选择影响NOx排放的因素进行相关性分析,确定拖拉机实际作业工况下影响NOx排放的主要因素,并运用这些因素建立NO,排放预测模型。在建立农用拖拉机NOx排放预测模型方面,分别采用了反向传播(BP)神经网络、长短期记忆(LSTM)神经网络以及遗传算法(GA)优化后的BP神经网络和LSTM神经网络,并对这些模型进行对比分析,进而评估其预测效果。研究结果显示,在所建立的模型中,经过优化的GA-BP神经网络模型在预测NOx排放方面效果最佳,该模型在各项评估指标上的结果都优于其他神经网络模型,RMSE、MAE、MAPE和R2分别为5。679×10-3、4。057×10-3、3。751%和0。991 5。因此,使用GA-BP神经网络模型预测农用拖拉机NOx排放是可行的。
Research on NOx Emission Prediction Model for Agricultural Tractors Based on Artificial Neural Network
Accurate prediction of NOx emissions under actual working conditions is crucial for managing regional pollutant emissions.Therefore,this study focuses on agricultural tractors and employs a Portable Emission Measurement System(PEMS)to gather NOx emission under real operating conditions.By conducting correlation analyses of factors affecting NOx emissions,the main factors affecting NOx emissions during the actual working conditions of tractors were determined,and the NOx emission prediction model was established by applying these factors.In the process of establishing a NOx emission prediction model for agricultural tractors,the research utilizes the Back Propagation(BP)neural network,and the Long Short-Term Memory(LSTM)neural network,and optimizes both the BP and LSTM neural networks using Genetic Algorithm(GA)for comparison and evaluation of their prediction performance.The results demonstrate that among the established models,the opti-mized GA-BP neural network model excels in predicting NOx emissions.This model outperforms other neural network models in various evaluation metrics,including Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Absolute Percent-age Error(MAPE),and the coefficient of determination(R2),with values of 5.679×10-3,4.057×10-3,3.751%and 0.991 5,respec-tively.Therefore,it is feasible to use the GA-BP neural network model to predict NO,emissions from agricultural tractors.

tractorsNOx emissionsprediction modelsneural networksgenetic algorithmslong short-term memory neural networks

乔梦雪、王天方、蔡文杰、杨通云、何超、王俊、刘学渊

展开 >

西南林业大学机械与交通学院,云南 昆明 650224

云南省高原山地机动车环保与安全重点实验室,云南 昆明 650224

拖拉机 NOx排放 预测模型 神经网络 遗传算法 长短期记忆神经网络

云南省教育厅科研基金项目云南省科技厅农业联合面上基金项目云南省科技厅农业联合重点项目

2022J0500202101BD070001-1102017FG001-010

2024

环境科学与技术
湖北省环境科学研究院

环境科学与技术

CSTPCD北大核心
影响因子:0.943
ISSN:1003-6504
年,卷(期):2024.47(9)