首页|基于GEE和遥感生态指数的临海市生态环境质量评价及分析

基于GEE和遥感生态指数的临海市生态环境质量评价及分析

扫码查看
现代快速城市化进程导致生态环境退化问题日益显著,城市发展与生态环境变化具备相关性,该文选取较高精度卫星影像普及后快速城市化的临海市作为典型研究区域,通过谷歌地球引擎云计算平台,基于2000-2020年Landsat5及Landsat8系列遥感数据构建遥感生态指数,并采用相关性、空间自相关、地理探测器方法进行分析。结果表明:(1)临海市研究区RSEI均值由2000年的0。74减小至2020年的0。64,20年间整体生态环境质量下降,但研究区生态环境等级仍以优、良为主。(2)研究区全局莫兰指数均大于0。3并随年份不断上升,临海市生态环境质量在全域及局部自相关上呈现高聚集度,具有显著的空间相关性,20年间"低-低"聚集区呈现不断增加趋势。(3)临海市生态质量主要影响因素是地形和土地利用,且在双因子交互作用下人为因素对临海市生态环境质量空间分布存在显著影响。该文综合了长时序、较高精度的遥感数据,将新兴遥感计算工具谷歌地球引擎云计算平台与ArcGIS、地理探测器工具相结合,论证了遥感生态指数运用于临海市的合理性,进行了该区域的时空变化聚类分析,并归因解释了临海市生态环境变化的主要影响因素。
Evaluation of Ecological Environmental Quality and Analysis in Linhai City Based on GEE and Remote Sensing Ecological Index
The issue of ecological environment degradation has become increasingly prominent against the backdrop of rapid urbanization.Urban development is increasingly correlated with changes in the ecological environment.Linhai City,which experienced rapid urbanization after the availability of high-resolution satellite imagery,was selected as a typical study area.Through the Google Earth Engine cloud computing platform,and utilizing Landsat5 and Landsat8 remote sensing data from 2000 to 2020,a remote sensing ecological index(RSEI)was constructed and analyzed using correlation,spatial au-tocorrelation,and geographic detector methods.The results show the average RSEI in the City decreased from 0.74 in 2000 to 0.64 in 2020,indicating a decline in overall ecological quality over 20 years,though the ecological grades remain primarily excellent and good.The global Moran's Ⅰ index values were consistently greater than 0.3 and increased over time,showing high clustering and significant spatial correlation in ecological quality both globally and locally.There is an increasing trend in"low-low"clustering areas over the 20 years.The primary factors influencing the ecological quality in are topography and land use.Human activities significantly affect the spatial distribution of ecological quality through dual-factor interac-tions.This study integrated long-term,high-resolution remote sensing data,combining emerging remote sensing computation tools such as Google Earth Engine,ArcGIS,and geographic detector tools.It demonstrates the applicability of the RSEI,con-ducting spatiotemporal change clustering analysis and attributing the primary influencing factors of ecological environment changes in the area.

Google Earth Engineremote sensing ecological indexgeographical detectorseco-environmental qualityLinhai City

黄胤滔、俞鸿杰、许月萍、江衍铭

展开 >

浙江大学建筑工程学院,浙江 杭州 310058

谷歌地球引擎 遥感生态指数 地理探测器 生态环境质量 临海市

2024

环境科学与技术
湖北省环境科学研究院

环境科学与技术

CSTPCD北大核心
影响因子:0.943
ISSN:1003-6504
年,卷(期):2024.47(11)