首页|基于ReliefF特征选择及随机森林企业停运标记不合规识别方法

基于ReliefF特征选择及随机森林企业停运标记不合规识别方法

扫码查看
精准识别企业停运标记是否合规是遏制自动监控数据造假的有效手段。通过机器学习方法识别企业不合规标记具有精准度较高的特点,随机森林作为机器学习的代表性模型,具有识别精度高、模型泛化能力强等优点,但其计算速度及处理效率并不高。针对此类问题,该文构建基于ReliefF特征选择的随机森林自动监控停运标记不合规模型,其原理是通过ReliefF算法选择最优特征子集并赋予相应的权重,从而达到加快计算速度、减少计算量以及提高处理效率的目的。为了验证模型的合理性及准确性,选择2024年核实的100家停运标记不合规企业进行验证,模型识别出不合规标记企业98家,准确率为98%,该模型验证了机器学习应用在非现场监管的合理性。通过预处理和机器学习算法组合的复合模型具有识别准确度高、计算速度快、模型泛化能力强等诸多优点,其可广泛应用在环境执法领域,快速提升工作效率。
An Noncompliance Identification Method for False Labeling Outage Based on ReliefF Feature Selection and Random Forest Algorithm
Accurately identifying whether the enterprise shutdown mark is compliant is an effective means to effectively combat the falsification of automatic monitoring data.As a representative model of machine learning,random forest has the advantages of high recognition accuracy and strong model generalization ability,but its computing speed and processing effi-ciency are not high.In order to solve such problems,a random forest automatic monitoring shutdown mark non-compliance model based on ReliefF feature selection is constructed,which is based on the principle of selecting the optimal feature subset and assigning corresponding weights through the ReliefF algorithm,so as to accelerate the calculation speed,reduce the amount of calculation and improve the processing efficiency.In order to verify the rationality and accuracy of the model,100 non-compliant enterprises with shutdown marks verified in 2024 were selected for verification,and the model identified 98 non-compliant labeling enterprises,with an accuracy rate of 98%and a high accuracy rate,the model verified the rationali-ty of machine learning application in off-site supervision.The composite model combined by preprocessing algorithm and machine learning algorithm has many advantages such as high recognition accuracy,fast calculation speed,and strong model generalization ability,and can be widely used in the field of environmental law enforcement to increase productivity quickly.

ReliefFrandom forestoptimal feature subsetnoncompliant shutdown markings

孙昕远

展开 >

河海大学人工智能与自动化学院,江苏 南京 211100

ReliefF 随机森林 最优特征子集 停运标记不合规

2024

环境科学与技术
湖北省环境科学研究院

环境科学与技术

CSTPCD北大核心
影响因子:0.943
ISSN:1003-6504
年,卷(期):2024.47(11)