首页|基于SSA-XGBoost算法的水质叶绿素a遥感高光谱反演

基于SSA-XGBoost算法的水质叶绿素a遥感高光谱反演

扫码查看
该研究以南水北调东线重要调蓄湖泊——南四湖上级湖为研究对象,针对季节性藻类暴发、富营养化风险较高以及水体浑浊等水质特点,开展遥感高光谱水质叶绿素a反演研究,同步获取水体高光谱数据和水质数据,通过归一化、一阶微分、两两比值以及四波段模型等4种光谱数据预处理方式,提高了高光谱信息质量,并通过Pearson相关性分析筛选出6个反演水质叶绿素a的最优敏感特征波段或组合波段作为模型输入因子,采用SSA-XGBoost耦合算法,构建适宜南四湖上级湖浑浊水质特点的叶绿素a高精度反演模型。结果表明,SSA-XGBoost模型拟合优度R2为0。946,平均绝对误差MAE为2。83 mg/m3,均方根误差RMSE为3。69 mg/m3,模型预测精度较高,且优于SVM模型和BP神经网络模型,应用效果良好,模型研究和应用可为南四湖上级湖水体的富营养化监测与控制提供数据支撑和技术保障。
Remote Sensing Hyperspectral Inversion of Chlorophyll a in Water Quality Based on SSA-XGBoost Algorithm
This study focuses on the important regulation and storage lake on the eastern route of the South to North Water Diversion Project-Shangji Lake.In response to the water quality characteristics such as seasonal algal blooms,high eu-trophication risks,and turbid water bodies,field experiments were conducted on remote sensing hyperspectral water quality chlorophyll a inversion.The hyperspectral data and water quality data were synchronously obtained.Four spectral data prepro-cessing methods,including normalization,first-order differentiation,pairwise ratio,and four band model,were used to improve the quality of hyperspectral information.Pearson correlation analysis was used to select six optimal sensitive charac-teristic bands or combination bands for inverting water quality chlorophyll a as model input factors.SSA-XGBoost coupling algorithm was used to construct a high-precision water quality chlorophyll a inversion model suitable for the turbid water characteristics of the Lake.The results indicate that,SSA-XGBoost model is superior to the SVM model and BP neural net-work model,with a goodness of fit of 0.946,an average absolute error of 2.83 mg/m3,and a root mean square error of 3.69 mg/m3.The model has high prediction accuracy and good application effect.This study can provide data support and tech-nical support for the monitoring and control of eutrophication in the water body.

Shangji Lakeremote sensing hyperspectralchlorophyll aSSA-XGBoostinversion

李祥、刘帅、陈发明、宋武昌、孙韶华、王明泉、潘章斌、贾瑞宝

展开 >

山东省城市供排水水质监测中心,山东 济南 250011

南四湖上级湖 遥感高光谱 叶绿素a SSA-XGBoost 反演

2024

环境科学与技术
湖北省环境科学研究院

环境科学与技术

CSTPCD北大核心
影响因子:0.943
ISSN:1003-6504
年,卷(期):2024.47(12)