首页|硅藻土负载α-MnO2纳米复合材料催化臭氧氧化溴氨酸钠的性能及机理

硅藻土负载α-MnO2纳米复合材料催化臭氧氧化溴氨酸钠的性能及机理

扫码查看
采用水热法成功合成了 4种晶相结构的MnO2及将其负载在硅藻土上的纳米复合材料,并对其催化臭氧氧化降解溴氨酸钠(BAA)性能进行了详细研究.采用XRD、SEM、CV、EIS等手段对材料进行表征,α-MnO2/DE更低的极化电阻以及更快地电子转移效率是其性能优异的原因.单因素实验结果表明,α-MnO2/DE催化臭氧氧化反应体系能在30 min内将50 mg·L-1 BAA完全降解.通过对反应前后XPS表征、自由基淬灭实验、ESR分析研究该反应体系的催化机理.结果表明,Mn(Ⅲ)作为反应活性位点使O3吸附并活化产生ROS,同时该体系的主要活性氧物种为·OH.此外,离子干扰实验和循环实验证明该新型催化剂具有优异的稳定性和广阔的应用前景.
Performance and mechanism of diatomite-loaded α-MnO2 nanocomposites for catalytic ozone oxidation of bromamine acid sodium salt
MnO2 with four types of crystalline phase structure and the composite nanomaterials of these MnO2 loaded on diatomite were successfully synthesized by a hydrothermal method,and a detailed research was conducted on their performance in catalytic ozonation and degradation of bromamine acid sodium salt(BAA).The materials were characterized by XRD,SEM,CV and EIS,of which α-MnO2/DE presented the lower polarization resistance and the faster electron transfer efficiency,which contributed to its excellent performance.Single factor experiments showed that the α-MnO2/DE-catalyzed ozone oxidation system could degrade 50 mg·L-1 BAA by 100%within 30 min.XPS characterization before and after the reaction,free radical quenching experiment,and ESR analysis was used to identify the catalytic mechanism of the system.The results showed that Mn(Ⅲ)acted as the reactive site to adsorb O3 molecules and activate them to produce ROS,at the same time the main reactive oxygen species in the system was·OH.In addition,ionic interference and cycling experiments demonstrated that the novel catalyst had an excellent stability and promising application for organic pollutant degradation.

heterogeneous catalytic ozonationMnO2diatomitebromamine acid sodium saltmechanism

丁兆罡、龚程、刘升、吕新新、陈星

展开 >

合肥工业大学资源与环境工程学院,合肥 230009

合肥工业大学工业与装备技术研究院,合肥 230009

非均相臭氧催化氧化 MnO2 硅藻土 溴氨酸钠 机理

安徽省科技重大专项项目国家重点研发计划项目

202003a070200042019YFC0408500

2024

环境工程学报
中国科学院生态环境研究中心

环境工程学报

CSTPCD北大核心
影响因子:0.804
ISSN:1673-9108
年,卷(期):2024.18(7)