首页|PAC促进直接电子传递强化厌氧消化处理SMX废水的机制

PAC促进直接电子传递强化厌氧消化处理SMX废水的机制

扫码查看
抗生素会显著抑制厌氧消化,探究简便易行的促进种间电子转移的方法,对于优化养殖、制药等废水的处理与资源化具有重要意义.本文考察了粉末活性炭(powdered activated carbon,PAC)强化厌氧消化处理高浓度磺胺甲恶唑(sulfamethoxazole,SMX)废水的效能与机制.高浓度SMX抑制了厌氧消化,使得最大甲烷产量降低13%,而向厌氧污泥中添加4 g·g-1(以COD计)或8 g·g-1 PAC均抵消了这种不利影响,相较于SMX暴露控制组提升了 22.4%,显著改善了甲烷生成.PAC会对厌氧代谢活性产生正向调控,丰富了污泥中ATP、CytC和辅酶F420这些在能量转换过程中的重要物质,还丰富了潜在的种间直接电子转移(DIET)菌群和SMX降解相关的优势属.PAC会强化挥发性脂肪酸(Volatile Fatty Acids,VFAs)氧化细菌(Syntrophobacter 和 Syntrophomonas 等)和产甲烷菌(Methanosarcina)的 DIET 过程,促进VFAs转化为甲烷.
Mechanism of enhanced anaerobic digestion by PAC promoting direct electron transfer for SMX wastewater treatment
Antibiotics significantly inhibit anaerobic digestion,and it is important to optimize the treatment and resource recovery of pharmaceutical wastewater by exploring simple and easy methods for promoting interspecies electron transfer.Herein,the efficacy and mechanism of powdered activated carbon(PAC)-enhanced anaerobic digestion for the treatment of high-concentration sulfamethoxazole(SMX)wastewater were investigated.SMX with high concentration hindered anaerobic digestion,resulting in a 13%reduction in maximum methane production.The addition of either 4 g·g-1(as COD)or 8 g·g-1 PAC to the anaerobic digested sludge could avoid the inhibition and significantly improve methanogenesis by 22.4%compared to the SMX-exposed control group.In addition,PAC boosted anaerobic metabolic activity,enriching sludge with ATP,Cyt C,and coenzyme F420,which were important energy storage and transport substances for microorganisms,as well as direct interspecies electron transfer(DIET)flora and dominant genera associated with SMX degradation.PAC could strengthen the DIET between the oxidizing bacteria in VFAs(Syntrophobacter and Syntrophomonas,etc.)and methanogenic bacteria(Methanosarcina),facilitating the conversion of VFAs to methane.

sulfamethoxazoleanaerobic biodegradationmethane productiondirect interspecies electron transfer

王永斌、成宇、张唯、古振澳、胡承志

展开 >

郑州大学河南先进技术研究院,郑州 450001

中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085

中国科学院大学,北京 100049

磺胺甲恶唑 厌氧生物降解 产甲烷 种间直接电子转移

长江生态环境保护修复联合研究第二期国家自然科学基金资助项目国家自然科学基金资助项目

2022-LHYJ-02-03035220010152100109

2024

环境工程学报
中国科学院生态环境研究中心

环境工程学报

CSTPCD北大核心
影响因子:0.804
ISSN:1673-9108
年,卷(期):2024.18(7)