首页|基于改进鲸鱼算法优化GRU-CNN的溶解氧预测

基于改进鲸鱼算法优化GRU-CNN的溶解氧预测

扫码查看
为了提高相关模型在长江调关水质断面的溶解氧预测精度,基于门控循环单元(gated recurrent unit,GRU),卷积神经网络(convolutional neural networks,CNN)和鲸鱼优化算法(whale optimization algorithm,WOA)提出了一种混合预测方法.模型通过GRU提取水质数据的长期历史特征,通过CNN对GRU的输出和输入进行卷积提取短期特征,将两者进行算术拼接得到最终预测结果.通过将Tent混沌映射、自适应惯性权重和遗传算法(genetic algorithm,GA)引入WOA算法,解决WOA算法初始化种群质量较低,易早熟和对参数设置敏感的问题之后,再使用改进鲸鱼算法(IWOA)对模型进行参数寻优.实验结果表明,所提出的改进鲸鱼算法优化GRU-CNN(IWOA-GRUC+)模型具有出色的效果,其MAPE仅为2.27%,在RMSE、MAE和R2这几项指标上,分别达到了 0.339%、0.216%和0.913%的优良表现.IWOA-GRUC+模型一定程度上提高了传统模型在溶解氧(DO)预测中的性能.
Dissolved oxygen prediction based on GRU-CNN optimized with improved whale optimization algorithm
In order to enhance the predictive accuracy of dissolved oxygen in the Yangtze River's water quality profile,a hybrid prediction method incorporating the Gated Recurrent Unit(GRU),Convolutional Neural Networks(CNN),and the Whale Optimization Algorithm(WOA)has been proposed.The model utilizes the GRU to capture long-term historical features of the water quality data,while employing the CNN to extract short-term features from the GRU's input and output through convolutional layers.The final prediction results are obtained by concatenating the outputs of both models using arithmetic operations.To address the issues of low population quality,premature convergence,and sensitivity to parameter settings in the initialization stage of the WOA algorithm,the Tent chaotic map,adaptive inertia weight,and Genetic Algorithm(GA)are introduced into the WOA algorithm.Subsequently,the Improved Whale Optimization Algorithm(IWOA)is applied to optimize the model's parameters.The experimental results demonstrate that the proposed Improved Whale Optimization Algorithm optimized GRU-CNN(IWOA-GRUC+)model delivers outstanding performance.It achieves a notably low MAPE of 2.27%and exhibits excellent results with RMSE,MAE,and R2 values of 0.339,0.216,and 0.913%,respectively.The IWOA-GRUC+model significantly enhances the performance of traditional models in predicting dissolved oxygen(DO)levels.

dissolved oxygen predictiongated recurrent unit(GRU)convolutional neural networks(CNN)whale optimization algorithm(WOA)genetic algorithm(GA)

胡龙元、刘黎志

展开 >

智能机器人湖北省重点实验室(武汉工程大学),武汉 430205

溶解氧预测 门控循环单元 卷积神经网络 鲸鱼优化算法 遗传算法

2024

环境工程学报
中国科学院生态环境研究中心

环境工程学报

CSTPCD北大核心
影响因子:0.804
ISSN:1673-9108
年,卷(期):2024.18(10)