首页|基于特征选择的BP神经网络算法滑行时间预测

基于特征选择的BP神经网络算法滑行时间预测

扫码查看
为准确预测离港航班滑行时间,基于数理分析同时段场面航空器滑行数量、平均滑行时间等因素对离港航空器滑行时间的影响.将皮尔逊相关系数与随机森林算法相结合减少冗余特征变量,建立基于BP神经网络的滑行时间预测模型,提高离港航空器场面滑行时间预测精度,并通过交叉验证证明预测结果的稳定性.预测结果表明:通过皮尔逊相关系数与随机森林组合模型进行特征选择可提高BP神经网络预测结果的精度,离港航空器的滑行时间预测误差在±5min内的占比由88.23%提升至92.26%,且预测效果较为稳定.模型可以精确预测离港航班的滑行时间,为机场运行提供决策依据.
Taxiing Time Prediction Based on the Feature Selection of BP Neural Network Algorithm
In order to accurately predict the taxiing time of departing flights,the influence of multiple fac-tors such as the number of aircraft taxiing on the surface and the average taxiing time at the same time on the taxiing time of departing aircraft was analyzed based on data statistics.In order to make taxiing time prediction better,the Pearson correlation coefficient and random forest algorithm are combined to reduce redundant feature variables.Then combined with the actual flight data,a BP neural network prediction model was established,and the model passed the cross-validation.The prediction results show that the prediction accuracy of the model after feature selection is high,the proportion of error values within 5 min increases from 88.23%to 92.26%,and the prediction effect is relatively stable.The model can accurate-ly predict the taxiing time of departing flights and provide decision-making basis for airport operations.

taxiing time predictionBP neural networkfeature screeningpearson correlation coefficientrandom forest

章月、周洁敏

展开 >

南京航空航天大学,江苏南京 211000

滑行时间预测 BP神经网络 特征选择 皮尔逊相关系数 随机森林

联合空中ZZZC空域容量评估关键技术及验证技术评估项目资助

KJ20201A040155

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(1)
  • 9