首页|语音识别在空中交通管制中的应用挑战与发展

语音识别在空中交通管制中的应用挑战与发展

扫码查看
研究一种安全可靠的管制语音识别系统对于推进空管自动化进程、降低管制人员负荷、提升安全效能至关重要.对管制语音识别技术发展所面临的挑战进行了详细介绍,测试科大讯飞、腾讯云、阿里云、上海麦图这4家公司的商用语音识别系统.结果表明,在前3家通用领域的商用ASR系统中,科大讯飞识别效果最好,CER为25.36%.相比之下,由于麦图的产品是基于ATC数据训练,具有最佳性能,其CER为15.02%.此外,设计了实验来探究人工设计的语音特征和基于自监督预训练策略提取的特征之间的优缺点.结果表明,后者有利于提升识别系统识别准确率和鲁棒性,但存在推理速度慢和部署难度大的问题.最后,总结了研究进展并进行了未来展望.
Challenges and Development of Speech Recognition in Air Traffic Control Applications
Researching a secure and reliable air traffic control(ATC)speech recognition system is of par-amount importance in advancing the automation process,reducing the workload of ATC personnel,and en-hancing safety efficiency.This paper provides a detailed overview of the challenges faced in the develop-ment of ATC speech recognition technology and evaluates commercial speech recognition systems from four companies:iFlytek,Tencent Cloud,Alibaba Cloud,and Shanghai Maitu.The results indicate that a-mong the three general-purpose commercial ASR systems,iFlytek achieves the best recognition perform-ance with a Character Error Rate(CER)of 25.36%.However,it falls short of meeting the deployment requirements in the ATC domain.In contrast,Maitu's product,which is trained on ATC data,demonstrates the optimal performance with a CER of 15.02%.Furthermore,this study designs experiments to explore the strengths and weaknesses of manually designed speech features and features extracted through self-supervised pre-training strategies.The findings show that the latter contributes to improved recognition accuracy and robustness but raises concerns about slower inference speeds and deployment complexities due to the large data volume.In conclusion,this paper summarizes its findings and provides a forward-looking perspective,enabling readers to gain a comprehensive understanding of the research in this field.Developing a safe and dependable ATC speech recognition system holds the key to propelling air traffic control into a more automated and efficient future while lightening the burden on controllers and enhan-cing overall safety.

ATCASRmulti-task learningself-supervised learningknowledge distillation

孔建国、李煜琨、蒋培元、梁海军

展开 >

中国民用航空飞行学院,四川广汉 618000

ATC ASR 多任务学习 自监督学习 知识蒸馏

中央高校基本科研业务费专项资金资助中央高校基本科研业务费专项资金资助四川省科技计划项目资助

PHD2023-035ZHMH2022-0092022YFG0210

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(1)
  • 31