首页|基于时空图网络的空中交通流量预测研究

基于时空图网络的空中交通流量预测研究

扫码查看
准确的空中交通流量预测对航空运输管理和飞行安全保障有至关重要的意义.然而,空中流量存在复杂时间波动模式,并且不同机场之间存在依赖关系,给空中交通流量的精确预测带来了巨大的挑战.提出基于时空图网络的空中交通流量预测方法,捕获空中流量的时间变化模式和不同机场之间的依赖关系,从而实现精准的空中交通流预测.在空间特征学习模块,通过对机场之间关系进行建模,采用常微分方程提取机场之间的依赖关系.在时间特征学习模块中,引入了高效的重构器表征空中交通流的长程时间相关性.在Airline On-Time Performance Data数据集,该方法在未来6 h、9 h、12 h预测实验的加权平均绝对百分比误差分别为35.51%、36.54%、35.55%,性能明显优于已有预测方法.
Air Traffic Flow Forecasting Based on Spatial-temporal Graph Network
Accurateair traffic flow forecasting is significant for air transport management and flight safety.However,precise forecasting of air traffic flow is challenging due to complex temporal fluctuation patter-nand close dependency between different airports.This paper proposedan air traffic flow forecasting ap-proach based Spatial-Temporal Graph Network to capture both temporal variation pattern and dependency between different airports.In the spatial feature learning module,graph ordinary differential equation was employed to extract the dependency relationships between airports.In the temporal feature learning mod-ule,the efficient reformer was introduced to characterize the long-range temporal correlation of air traffic flow.In the dataset of Airline on-the-time Performance Data,the proposed method achieved better per-formance than the compared forecasting methods.The proposed method can achieve the performance with the WMAPE(Weighted Mean Absolute Percentage Error)metrics of 35.51%,36.54%and 35.55%,for prediction at the length of 6 h,9 h and 12 h.

air traffic forecastingtimeseries forecasting,graph representationTransformer methodspatial-temporal dependencies

丁辉、胡明华、尹嘉男

展开 >

南京航空航天大学,江苏 南京 211000

中国电科二十八所空管全国重点实验室,江苏 南京 211000

空中交通预测 时序预测 图表示 Transformer方法 时空依赖关系

国家重点研发计划

2021YFF0603900

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(2)
  • 11