首页|基于超维计算的雷达目标航迹分类方法

基于超维计算的雷达目标航迹分类方法

扫码查看
针对当前雷达目标航迹分类中存在的计算量大、可解释性差、模型更新困难等问题,提出了一种基于超维计算的雷达目标航迹分类方法.通过对雷达目标航迹数据的样本编码,将属性和样本值映射至各自的超维向量中,再利用超维向量的运算法则,通过编码和训练将各类样本处理得到类别超维向量集,测试样本通过超维向量间的相似度衡量即可完成分类.试验结果表明,方法最佳识别准确率为91.78%,所用训练时间为1.28s,在达到较高的识别率水平下,明显降低了运算时间.
Radar Track Classification Method Based on High-Dimensional Computing
A radar track classification method based on hyper-dimensional computing is proposed aiming at the problems of large computation,poor interpretability,and difficult model updating in the current ra-dar track classification.Through the super-dimensional coding of radar track data,attributes and sample values are mapped to their respective super-dimensional vectors.Then all kinds of samples are processed to obtain the category super-dimensional vector set using simple algorithms and training retraining.The similarity measure between the super-dimensional vectors can categorize the test samples.The experimen-tal results show that the recognition time of this method is 1.28s and the recognition accuracy is 91.78%,which significantly reduces the operation time under the acceptable recognition rate level.

hyperdimensional computingtrajectory classificationhyperdimensional codingretraining

徐岑洋

展开 >

南京航空航天大学,江苏 南京 211000

雷达航迹 分类识别 超维计算 超维编码 重训练

国家自然科学基金面上项目

62271255

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(2)
  • 10