首页|一种改进的基于DCGAN的图像生成算法

一种改进的基于DCGAN的图像生成算法

扫码查看
针对传统深度卷积生成对抗网络(Deep convolutional Generative Adversarial Network,DCGAN)在训练稳定性和生成图像质量上的不足,提出了一种改进的基于DCGAN的图像生成算法.利用了高效通道注意力(Efficient Channel Attention,ECA)模块,提高网络对图像中不同通道的重要性的识别能力,从而提升训练过程的稳定性和生成图像的质量.采用Wasserstein距离作为损失函数的一部分,以此精确地度量真实分布和生成分布之间的差异,并引入了Focal Loss函数,以缓解Jensen-Shannon(JS)散度在优化过程中的不稳定性,进而加快模型的收敛速度.实验结果表明,改进算法在生成图像质量上有显著提升,生成精度达到了97.6%,比DCGAN基准模型高出4.2%.
An Improved Image Generation Algorithm Based on DCGAN
An improved image generation algorithm based on the traditional Deep Convolutional Genera-tive Adversarial Network(DCGAN)is proposed to address issues related to training stability and image quality.This enhancement leverages the Efficient Channel Attention(ECA)module,which efficiently rec-ognizes the importance of different channels in an image,thereby improving the stability of the training process and the quality of generated images.Additionally,Wasserstein distance is incorporated as part of the loss function to precisely measure the difference between the real and generated distributions.Further-more,a Focal Loss function is introduced to alleviate the instability associated with Jensen-Shannon(JS)divergence during optimization,thereby accelerating the model convergence.Extensive experimental re-sults demonstrate a significant improvement in image generation quality using the proposed algorithm.Spe-cifically,the generation accuracy reaches 97.6%,representing a 4.2%increase compared to the baseline DCGAN model.

generative adversarial networkdeep convolutional generative adversarial networkneural net-workchannel attention mechanismimage generation

罗银辉、沈俊宇、王星怡、章光明

展开 >

中国民用航空飞行学院,四川 广汉 618000

生成对抗网络 深度卷积生成对抗网络 神经网络 通道注意力机制 图像生成

中央高校基本科研业务费专项

ZHMH2022-006

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(3)
  • 16