首页|基于CNN算法的巡飞弹控制器故障诊断

基于CNN算法的巡飞弹控制器故障诊断

扫码查看
巡飞弹所处应用环境复杂,并且其对安全性、可靠性有较高的要求,控制器是保障其安全可靠飞行的核心部件,对控制器进行高效准确的故障诊断具有重要意义.首先,对巡飞弹控制器传感器和执行结构的故障进行分析,并对每种故障进行数学建模,提出控制器的故障模型.采用深度学习对故障进行诊断,先设计了基于CNN算法的诊断模型网络结构,并设置了不同的学习率和步数进行实验,对CNN算法进行改进,以此提高模型的识别精度和稳定性.最后优化了深度学习的网络结构,设置了不同的优化器、学习率、激活函数作为对比实验,得到最合适的模型参数.通过实验验证,改进后的CNN算法可有效提升实验精度提升,以实现高精度故障诊断.
Fault Diagnosis of Loitering Munitio Controller Based on CNN Algorithm
The application environment of the Loitering Munitionis located is complex and have high re-quirements for security and reliability.The controller is the core component to ensure its safe and reliable flight,and it is of great significance to perform efficient and accurate diagnosis of the controller.First of all,analyze the fault of the sensor and the execution structure of the loitering munition controller,and make mathematical modeling for each failure,and propose the fault model of the controller.Adopting deep learning to diagnose the fault,first design the CNN-based diagnostic model network structure,and set up different learning rates and steps for experiments to improve the CNN algorithm to improve the identifica-tion accuracy and stability of the model.Finally,the network structure of deep learning is deepened,and different optimizers,learning rates,and activation functions are set up as comparison experiments to obtain the most suitable model parameters.Through experimental verification,the improved CNN algorithm can effectively improve the accuracy of the experiment to achieve high-precision fault diagnosis.

loitering munitionfault diagnosisconvolutional neural networkflight control systemma-chine learning

王杰、马小博、许培元

展开 >

航空工业西安航空计算技术研究所,陕西 西安 710000

巡飞弹 故障诊断 机器学习 卷积神经网络 飞行控制系统

航空科学基金

2020Z069031001

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(4)