首页|基于贝叶斯正则化神经网络的裂纹扩展预测

基于贝叶斯正则化神经网络的裂纹扩展预测

扫码查看
针对运载器结构合金材料的断裂行为仿真的快速性需求,提出了一种基于贝叶斯正则化的神经网络模型的裂纹生长行为快速预测方法.构建裂纹生长预测神经网络模型,提高神经网络模型任务适应能力,采用贝叶斯正则化方法训练模型获得网络权重,并对比多种神经网络训练方法的预测准确率.基于扩展有限元法及经典理论,对有限元仿真中的材料参数进行推算,并对中心预置裂纹的7050 铝合金板件的静载拉断进行有限元仿真批量计算,观察不同加载水平下,不同长度及角度的预置裂纹损伤扩展特性.仿真结果表明,方法计算速度快且具有良好的预测准确率,能够满足在飞行器结构中对裂纹扩展特性进行快速评估.
Crack Growth Behavior Prediction Based on Bayesian Regularized Neural Networks
Based on the extended finite element method and classical theory,the material parameters in the finite element simulation are calculated,and the 7050 aluminum alloy plates with the center preset cracks are respectively subjected to static load breaking for batch calculation of finite element simulation,the damage propagation characteristics of preset cracks with different lengths and angles under different loading levels are observed.Aiming at the fast assessment of fracture behavior simulation of vehicle struc-tural alloy materials,proposes a rapid prediction method of crack growth behavior based on Bayesian regu-larized neural network model.Construct a neural network model for crack growth prediction,improve the task adaptability of the neural network model,use the Bayesian regularization method to train the model to obtain network weights,and compare the prediction accuracy of various neural network training methods.The simulation result shows that the method proposed is fast and has good prediction accuracy,which can meet the requirements of rapid evaluation of crack propagation characteristics after detecting such cracks in aircraft structures in engineering.

fracturefinite element methodBayesian networkneural networks

李配缘、蔡巧言、胡雨传、王飞、张涛

展开 >

北京宇航系统工程研究所,北京 100000

中国运载火箭技术研究院,北京 100000

断裂 有限元法 贝叶斯网络 神经网络

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(4)