首页|基于改进PSO和CHNN的无人机路径鲁棒性优化

基于改进PSO和CHNN的无人机路径鲁棒性优化

扫码查看
当前无人机路径规划通过机器学习和深度学习以及进化算法和智能算法的融合运用来实现.针对无人机在不同城市之间的路径鲁棒性优化的问题,现有的单一神经网络模型在一定程度上达不到最优解,并且会出现局部寻优的情况,导致优化效果达不到最大化.研究了一种运用改进粒子群算法结合连续性Hopfield神经网络模型的寻优迭代,通过改进粒子群算法中的惯性权重,控制粒子运动速度,在所有粒子进行更新的过程中,每个单独粒子均有独立的搜索和寻优能力.结果表明IPSO-CHNN神经网络模型可以有效避免局部最优解,并且相较于传统的HNN对无人机路径鲁棒性的优化效果更好.
UAV Path Robustness Optimization Based on Improved PSO and Hopfield Neural Network
Nowadays,drone path planning is achieved through the fusion of machine learning,deep learn-ing,evolutionary algorithms and intelligent algorithms.For the problem of path robustness optimization of UAVs between different cities,the existing single neural network model cannot reach the optimal solution to a certain extent,and local optimization will occur,resulting in the optimization effect can not be maxi-mized.In this paper,an improved particle swarm optimization algorithm combined with the continuous Hopfield neural network model is studied.By improving the inertia weight in the particle swarm optimiza-tion algorithm,the particle motion speed is controlled.In the process of updating all particles,each indi-vidual particle has an independent search and optimization ability.The results show that IPSO-CHNN neural network model can effectively avoid local optimal solutions,and has better optimization effect on UAV path robustness than traditional HNN.

UAVHopfield neural networkparticle swarm optimizationrobustness

朱代武、张瀚文、蔡林均

展开 >

中国民用航空飞行学院,四川 广汉 618000

无人机 霍普菲尔德神经网络 粒子群算法 鲁棒性

民航局安全能力建设

14002600100015J013

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(5)
  • 8