首页|基于SSA-CNN-BiLSTM的航班延误预测

基于SSA-CNN-BiLSTM的航班延误预测

扫码查看
为了提高对机场航班延误时间的准确性,对预测模型进行了研究.采用麻雀搜索算法(SSA),结合卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM),提出了一种基于SSA-CNN-BiLSTM的航班延误预测模型.使用美国亚特兰大机场的实际运行数据进行了验证,与BiLSTM,CNN-LSTM等基准模型进行了比较试验,并加入流量和时间双特征数据集验证模型性能.结果表明,SSA-CNN-BiLSTM模型在评价指标上表现最优,其平均绝对误差(MAE)为5.15,均方根误差(RMSE)为7.58,预测精度优于基准模型,具有良好的多特征处理能力.
Flight Delay Prediction Based on SSA-CNN-BiLSTM
In order to improve the accuracy of flight delay time at airports,the prediction model was investi-gated and a flight delay prediction model based on SSA-CNN-BiLSTM was proposed by using Sparrow Search Algorithm(SSA)in combination with Convolutional Neural Network(CNN)and Bidirectional Long and Short-Term Memory Network(BiLSTM).Validation is carried out using actual operational data from Atlanta Airport in the U.S.A.Comparison tests are conducted with benchmark models such as BiLSTM,CNN-LSTM,and the model performance is verified by adding the dual feature dataset of flow and time.The results show that the SSA-CNN-BiLSTM model performs optimally in the evaluation indexes,with a mean absolute error(MAE)of 5.15 and a root mean square error(RMSE)of 7.58,and the prediction accuracy is better than that of the benchmark model,with good multi-feature processing capability.

flight delay predictionparameter optimizationconvolutional neural networksbidirectional long and short-term memory networkssparrow search algorithm

杨新湦、游超

展开 >

中国民航大学,天津 300000

航班延误预测 参数优化 卷积神经网络 双向长短时记忆网络 麻雀搜索算法

国家自然科学基金-民航基金联合重点项目

U2133207

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(5)
  • 8