首页|基于解耦预测和计数定位的密集行人检测算法

基于解耦预测和计数定位的密集行人检测算法

扫码查看
在密集场景下,由于遮挡导致行人局部语义缺失以及传统非极大值抑制算法难以处理高度重叠的检测框,现有基于提案的行人检测器难以发挥有效性.为此,提出了预测解耦模块.通过解耦预测的方式训练全身和可视框预测分支,增强网络对行人可视特征的理解.同时,提出了综合可视框和全身框标注的正负样本分配策略,引导网络充分利用行人可视特征回归全身框.此外,还提出了计数-定位非极大值抑制策略.通过局部计数分支和遮挡感知定位分支得到局部计数和遮挡定位,从而调整行人全身框置信度.基于CrowdHuman数据集的实验验证了所提方法在级联R-CNN框架下获得了3.8%的AP增益,0.9%的MR-2增益,2.5%的JI增益,证明了所提方法的先进性.
A Pedestrian Detection Method Based on Decoupling Prediction with Counting and Occlusion Locating in Crowds
In crowded scenes,occlusion causes partial semantic loss of pedestrians,and traditional Non-Maximum Suppression(NMS)algorithm struggles with highly overlapped detection boxes,limiting the ef-fectiveness of proposal-based pedestrian detectors.To address it,we propose a prediction decoupling module.It is trained with separate branches for predicting full-body and visible-body boxes,enhancing the network's understanding of visible-body features.Additionally,we introduce a strategy for assigning positive and negative samples based on comprehensive annotations of visible-body boxes and full-body boxes,guiding the network to effectively regress full-body boxes from visible-body features.Furthermore,we propose a Counting and Locating based NMS strategy.By utilizing the local counting branch and the occlusion-aware locating branch,we can obtain local counting and occlusion localization,thereby adjus-ting the confidence of full-body boxes.Experiments on the CrowdHuman validation set within the Cascade R-CNN framework demonstrates that we achieves 3.8%AP gains,0.9%MR-2 gains,2.5%JI gains,il-lustrating the advancement of our method.

prediction decoupling modulecounting and occlusion Locatingpedestrian detectionvisible regions

韩志凌

展开 >

华中科技大学,湖北 武汉 430000

解耦预测 计数定位 行人检测 可视区域

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(5)