首页|基于多元嵌入特征的航空器场面滑行轨迹预测

基于多元嵌入特征的航空器场面滑行轨迹预测

扫码查看
为满足机场场面智能化管理的需求,开创性地将自然语言处理(NLP)领域的node2vec算法和ROUGE-N评价体系引入航空器滑行轨迹预测研究.基于场面拓扑结构图和航空器行为,构建了一种新的滑行轨迹多元特征嵌入方法,并发展出一套长期轨迹预测框架.以深圳机场为例,提出了一种集成注意力机制的Bi-LSTM-A预测模型,并与RNN、LSTM和Bi-LSTM等传统模型的性能进行了对比.实验证明,在多元特征的基础上,Bi-LSTM-A模型精确率、召回率和F1 得分方面分别比对比模型平均高出10.11%、14.76%和12.78%.结果表明,提出的滑行轨迹预测技术能够显著增强长期滑行轨迹预测的准确性,可有效预估基于航班计划的场面运行状况,从而提升机场场面运行的智能化和效率.
Aircraft Taxiing Trajectory Prediction Based on Multi-embedding Features
To meet the requirements of airport surfaces intelligent management,this paper innovatively in-troduces the node2vec algorithm and ROUGE-N evaluation system from the NLP field into aircraft taxiing trajectory prediction research.By establishing a topological structure map of the airport surface,a new multi-feature embedding method for taxiing trajectories is created and framework is developed for long-term trajectory prediction.Taking Shenzhen Airport as an example,we proposed an attention mechanism integrated Bi-LSTM-A prediction model and compared its performance with traditional models like RNN,LSTM,and Bi-LSTM.In view of multi-feature embedding method,it is demonstrated that the Bi-LSTM-A model surpasses the baseline models by an average of 10.11%in precision,14.76%in recall rate,and 12.78%in F1 score.This indicates that the proposed predictive technique significantly en-hances the accuracy of long-term taxiing trajectory predictions and can effectively estimate the operational status of the airport based on flight schedules,thereby improving the intelligence and efficiency of airport ground operations.

airport surfacetaxiing trajectory predictionnatural language processingfeature extractionattention mechanism

殷萌暄、胡明华、尹嘉男、乔沛然、姚梦芸

展开 >

南京航空航天大学,江苏 南京 211000

机场场面 滑行轨迹预测 自然语言处理 特征提取 注意力机制

国家重点研发计划国家自然科学基金项目江苏省自然科学基金南京航空航天大学研究生科研与实践创新计划

2021YFB160050052002178BK20190416xcxjh20230705

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(5)
  • 3