首页|基于图的生成对抗网络无人机数据异常检测

基于图的生成对抗网络无人机数据异常检测

扫码查看
无人机异常状态检测是保障无人机飞行安全的重要途经之一,其中基于无人机飞行数据的异常检测是最常用的手段.因此,提出了一种基于图的生成对抗网络的异常检测算法(TGAN-GAT).以TCN为生成对抗网络的基础网络,解决了传统循环神经网络不能并行计算的问题,提高了训练速度,并引入图注意力机制以清晰地捕捉不同时间序列之间的关系.异常检测方法则依据由于重构误差与鉴别误差构成的异常分数.实验表明:此异常检测算法相对于MTAD-GAT等算法,在召回率与F1 分数上相对于第二名分别提升了10.68%和7.02%.
Anomaly Detection of UAV Data in Graph-based Generative Adversarial Networks
UAV anomaly state detection is one of the important ways to ensure the safety of UAV flight,a-mong which anomaly detection based on UAV flight data is the most commonly used means.Therefore,this paper proposes a graph-based generative adversarial network for anomaly detection algorithm(TGAN-GAT).In this paper,TCN is used as the base network of generative adversarial network,which solves the problem that traditional recurrent neural networks cannot be computed in parallel and improves the training speed.And the graph attention mechanism is introduced to clearly capture the relationship be-tween different time series.The anomaly detection method is then based on the anomaly score due to the reconstruction error and the discrimination error.Experiments show that this anomaly detection algorithm improves the recall and F1 score by 10.68%and 7.02%relative to MTAD-GAT compared to the second place.

multivariate time seriesgenerative adversarial networksanomaly detectiongraph attention mechanismsunsupervised learning

徐嘉闻、周航、汪玥、徐泽楷

展开 >

南京航空航天大学,江苏 南京 210000

多元时间序列 生成对抗网络 异常检测 图注意力机制 无监督学习

国家自然科学基金委员会-中国民用航空局民航联合研究基金重点项目

U2233208

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(5)
  • 5