首页|基于迁移学习-元学习的ADS-B攻击分类研究

基于迁移学习-元学习的ADS-B攻击分类研究

扫码查看
准确分类通航领域ADS-B攻击类型,采取预防攻击措施,对保障通航运行安全性具有重要意义.针对通航领域ADS-B攻击数据样本少,提出一种基于迁移学习-元学习的ADS-B攻击分类模型.该模型将迁移学习与深度卷积自编码器相结合,建立ADS-B攻击特征提取模型,提取数据样本的攻击有效特征表示,并运用元学习策略在特征空间中实现ADS-B攻击准确分类.实例研究表明,基于迁移学习-元学习的攻击分类模型可有效分类小样本ADS-B攻击,且正确率在95%以上.
Research on ADS-B Attack Classification Based on Transfer Learning-Meta Learning
Accurately categorizing the types of ADS-B attacks in the field of navigation and taking pre-ventive measures against the attacks are of great significance to guarantee the security of navigation opera-tion.Aiming at the small number of ADS-B attack data samples in the field of navigation,an ADS-B at-tack diagnosis and classification model based on migration learning-meta-learning is proposed.The mod-el combines migration learning with deep convolutional self-encoder to build an ADS-B attack feature model,extracts the effective feature representation of the attack from the data samples,and applies a meta-learning strategy to achieve accurate classification of ADS-B attacks in the feature space.An example study shows that the attack diagnosis classification model based on migration learning-meta-learning can effectively classify small-sample ADS-B attacks with more than 95%correct rate.

transfer learningconvolutional auto encodermodel-agnostic meta-learningADS-B inter-ference classificationgeneral aviation

李明、秦柳、宫献鑫、马明远

展开 >

中国民用航空飞行学院,四川广汉 618000

迁移学习 深度卷积自编码器 元学习 ADS-B分类 通航

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(6)