首页|面向未来机载网络的深度学习应用综述

面向未来机载网络的深度学习应用综述

扫码查看
随着飞机平台网络节点数量不断增多、网络规模不断扩大、网络业务趋于多样,传统的机载网络无法很好地满足新业务和新需求.深度学习在大规模和复杂拓扑的网络管理中展现出了巨大潜力.聚焦深度学习在未来机载网络中的应用领域,对深度学习在机载网络中的使用做了广泛调研,对其应用范式进行了讨论.
A Survey of Deep Learning for Next Generation Avionics Network
With the increasing number of airborne network nodes,avionics network scale continues to ex-pand,network services tend to be diverse,traditional airborne networks will not meet the new task and re-quirements.As a promising machine learning tool to handle the accurate pattern recognition from complex raw data,deep learning(DL)is becoming a powerful method to add intelligence to wireless networks with large-scale topology and complex topology conditions.Given the extensiveness of the avionics network,challenges and unresolved issues are presented to facilitate future studies,where DL based network sli-cing,infrastructure update to support DL based paradigms,open data sets and platforms for researchers,theoretical guidance for DL implementation and so on are discussed.

avionics networkdeep learningperformance optimization

邹昌昊、李怡然

展开 >

航空工业西安航空计算技术研究所,陕西西安 710000

机载网络 深度学习 性能优化

2024

航空计算技术
中国航空工业西安航空计算技术研究所

航空计算技术

CSTPCD
影响因子:0.316
ISSN:1671-654X
年,卷(期):2024.54(6)