首页|基于GA-SVM模型的软土路基沉降预测

基于GA-SVM模型的软土路基沉降预测

扫码查看
为实现软土地质条件下公路路基的沉降预测,提出了一种基于遗传算法优化支持向量机的路基沉降预测模型。采用支持向量机算法构建了软土路基沉降预测的基本模型,用遗传算法对模型超参数进行了调优,以公路沉降观测点的监测数据为样本建立了GA-SVM的路基沉降预测模型。结果表明:遗传算法可以有效提高支持向量机对沉降数据的拟合精度;GA-SVM沉降预测模型对10 个验证集样本的平均误差和均方根误差分别为0。001 5 mm、0。015 5 mm;未来10 期观测点位的路基结构趋于稳定,稳定后的平均预测沉降量约为0。03 mm/d。
Prediction of Soft Soil Roadbed Settlement Based on GA-SVM Model
In order to realize the settlement prediction of highway subgrade under soft soil geological conditions,a subgrade settlement prediction model based on Genetic Algorithm optimized Support Vector Machine is proposed.The basic model of soft soil subgrade set-tlement prediction is constructed by using Support Vector Machine algorithm,and the super parameters of the model are optimized by u-sing Genetic Algorithm.Taking the monitoring data of highway settlement observation points as samples,the subgrade settlement predic-tion model based on GA-SVM is established.The results show that Genetic Algorithm can effectively improve the fitting accuracy of Support Vector Machine for settlement data;The average error and root mean square error of GA-SVM settlement prediction model for 10 validation samples were 0.001 5 mm and 0.015 5 mm,respectively;The subgrade structure at the observation points in the next 10 periods tends to be stable,and the average predicted settlement after stabilization is about 0.03 mm/d.

roadbed settlementsoft soilsettlement predictionSupport Vector MachineGenetic Algorithm

管平

展开 >

武冈市公路建设养护中心,湖南 邵阳 422000

路基沉降 软土 沉降预测 支持向量机 遗传算法

2024

黑龙江交通科技
黑龙江省交通科学研究所,黑龙江省交通科技情报总站

黑龙江交通科技

影响因子:0.977
ISSN:1008-3383
年,卷(期):2024.47(6)
  • 9