首页|基于多燃料类型出租车轨迹匹配的居民出行CO2排放时空特征挖掘

基于多燃料类型出租车轨迹匹配的居民出行CO2排放时空特征挖掘

扫码查看
作为公共交通出行的重要补充,出租车运营产生的燃料消耗和CO2 排放模式与城市居民的出行足迹相一致。在公共交通电气化的背景下,精准计算多种燃料类型出租车出行的CO2 排放量并挖掘其在城市不同区域的时空特征,对了解城市居民出行CO2 排放的空间特征与实现城市CO2 减排具有重要的现实意义。运用兰州市出租车运行轨迹数据,通过隐马尔可夫模型轨迹匹配实现居民出租车出行轨迹与路径的精准识别,使用COPERT模型计算了汽油、CNG、油气混动三种燃料类型出租车的CO2 排放量,并在不同时空尺度对居民出行CO2 排放的时空特征进行分析。研究结果发现:由于电气化进程中汽油车数量的减少,在三种燃料类型出租车CO2 排放量中,油气混动车最高,CNG车次之,汽油车的CO2 排放量最低,工作日早晚高峰时段CO2 排放量高于非工作日,而凌晨时段CO2 排放量较低。CO2 排放热点主要集中在交通枢纽、商圈和住宅区附近,且以兰州市各城市中心区为原点沿带状向城市外围递减,这些区域的高排放量反映了城市居民的出行需求和活动模式。研究结论可作为多燃料类型出租车温室气体排放的精准测算与城市公共交通减排路径的研究基础,同时也对居民出行碳排放的时空特征挖掘和推动城市交通低碳出行提供依据。
Spatiotemporal Characteristics Mining of CO2 Emissions from Residential Trips Based on Trajectory Matching of Multi-fuel Taxis
As an important complement to public transport travel,the fuel consumption and CO2 emission patterns generated by taxi op-erations are consistent with the travel footprint of urban residents.In the context of public transport electrification,it is of great practical significance to accurately calculate the CO2 emissions of taxi trips with various fuel types and explore their spatio-temporal character-istics in different urban areas to understand the spatial characteristics of CO2 emissions from urban residents'trips and realize urban CO2 emission reduction.In this paper,the trajectory data of taxis in Lanzhou city are used to accurately identify the trajectory and path of resident taxis by using hidden Markov model trajectory matching.The CO2 emissions of taxis with gasoline,CNG and oil-gas hybrid fuel types are calculated by using COPERT model,and the spatio-temporal characteristics of CO2 emissions from residents'travel are analyzed at different spatio-temporal scales.The results show that,due to the reduction of the number of gasoline and oil vehicles in the electrification process,the CO2 emission of the three fuel types of taxis is the highest,and that of the CNG vehicles is the lowest,and the CO2 emission of the gasoline vehicles is higher in the morning and evening peak hours on working days than in non-working days,and the CO2 emission is lower in the morning hours.The hot spots of CO2 emission are mainly concentrated in the vicinity of transportation hubs,business districts and residential areas,and decline from the central areas of cities in Lanzhou along the belt to the outskirts of the city.The high emissions in these areas reflect the travel demand and activity pattern of urban residents.The conclusions of this study can be used as the basis for accurate calculation of greenhouse gas emissions of multi-fuel taxis and research on emission reduction paths of urban public transportation,and also provide a basis for mining the spatial-temporal characteristics of carbon emis-sions of residents'travel and promoting low-carbon travel of urban transportation.

traffic engineeringurban traffic CO2 emission measurementtaxi trajectory matchingspatiotemporal characteristicshidden markov models

焦萍、马宁远、赵剑楠、方歆杰、刘赛、白洁、耿新瑞

展开 >

西安航空学院,陕西 西安 710077

长安大学运输工程学院,陕西 西安 710064

中共陕西省委党校(陕西行政学院),陕西 西安 710061

比亚迪汽车工业有限公司,陕西 西安 710119

展开 >

交通工程 城市交通CO2排放测算 出租车轨迹匹配 时空特征 隐马尔可夫模型 COPERT模型

陕西省杰出青年基金

2021JC-27

2024

黑龙江交通科技
黑龙江省交通科学研究所,黑龙江省交通科技情报总站

黑龙江交通科技

影响因子:0.977
ISSN:1008-3383
年,卷(期):2024.47(7)
  • 13