黑龙江交通科技2024,Vol.47Issue(7) :178-181.

基于SSA-SVM的道路事故预测模型

Road Accident Prediction Model Based on SSA-SVM

杨朗
黑龙江交通科技2024,Vol.47Issue(7) :178-181.

基于SSA-SVM的道路事故预测模型

Road Accident Prediction Model Based on SSA-SVM

杨朗1
扫码查看

作者信息

  • 1. 湖南陆德工程咨询有限公司,湖南 衡阳 421200
  • 折叠

摘要

将道路事故特征因素和环境因素作为自变量,事故严重程度作为因变量,采用SVM构建道路事故预测模型,并使用SSA优化模型中的最优参数组合,最终建立基于SSA优化的SVM道路事故预测模型,模型预测准确率优于广义线性预测模型和BP神经网络预测模型.经过模型致因分析,得到三项对道路事故严重程度具有显著影响的自变量,分别为机非隔离形式、监控设施和最近交叉口交通组织形式,可作为道路交通安全管控的核心控制参数.

Abstract

With road accident characteristic factors and environmental factors as independent variables and accident severity as depend-ent variables,SVM was used to build a road accident prediction model,and the optimal parameter combination in the SSA optimization model was used to establish a road accident prediction model based on SSA optimization.The prediction accuracy of the model was bet-ter than that of generalized linear prediction model and BP neural network prediction model.Through the model causation analysis,three independent variables that have a significant impact on the severity of road accidents are obtained,namely,the non-isolation form,monitoring facilities and the traffic organization form of the nearest intersection,which can be used as the core control parameters of road traffic safety management and control.

关键词

道路事故预测/SVM模型/SSA优化/致因分析

Key words

road accident prediction/SVM model/SSA optimization/causation analysis

引用本文复制引用

出版年

2024
黑龙江交通科技
黑龙江省交通科学研究所,黑龙江省交通科技情报总站

黑龙江交通科技

影响因子:0.977
ISSN:1008-3383
参考文献量2
段落导航相关论文