首页|基于SVM的电动自行车骑行者事故伤害程度影响因素分析

基于SVM的电动自行车骑行者事故伤害程度影响因素分析

扫码查看
为研究电动自行车交通事故中影响电动自行车骑行者伤害程度的因素,利用一县级市 2018-2021 年涉电动自行车与机动车发生交通事故数据,选取22 类与交通事故相关的因素,运用随机森林算法对22 类变量进行筛选,采用SVM算法进行分类预测.结果表明:电动自行车交通事故致电动自行车骑行者死亡或重伤的重要因素依次为交通方式、驾龄、道路类型、头盔使用情况、违法行为、事故地点、路口路段类型、道路隔离、性别、交通控制方式.
Analysis of Factors Influencing the Degree of Injury in Electric Bicycle Rider Accidents Based on SVM
In order to study the factors that affect the degree of injury to electric bicycle riders in electric bicycle traffic accidents,22 types of factors related to traffic accidents were selected based on the data of electric bicycle and motor vehicle accidents in a county-level city from 2018 to 2021.Random forest algorithm was used to screen the 22 types of variables,and SVM algorithm was used for classification prediction.The results indicate that the important factors causing death or serious injury to electric bicycle riders in elec-tric bicycle traffic accidents are,in turn,traffic mode,driving experience,road type,helmet usage,illegal behavior,accident location,in-tersection section type,road isolation,gender,and traffic control method.

electric bicyclesthe degree of injurySVM algorithm

于志青、孙振东

展开 >

河南警察学院,河南 郑州 450006

电动自行车 伤害程度 SVM算法

河南警察学院2023年度科研项目河南省科技厅2023年度科技攻关项目

HNJY-2023-61232102240019

2024

黑龙江交通科技
黑龙江省交通科学研究所,黑龙江省交通科技情报总站

黑龙江交通科技

影响因子:0.977
ISSN:1008-3383
年,卷(期):2024.47(9)
  • 5