首页|南平高速公路收费站车型识别系统应用分析

南平高速公路收费站车型识别系统应用分析

扫码查看
为满足当前高速公路收费站对车型识别系统要求不断提升的需求,需充分利用现代高新技术优化相应系统,探究基于视频图像技术的车型分类算法,提升车辆识别系统的应用成效,为提升高速公路收费站工作效率提供必要思路支持。基于此,对数据集构建以及车辆分类网络设计进行重点分析,探究车辆分类标签设计以及图像预处理要点,同时针对特征提取网络进行探究,提出对EfficientNet V2 网络进行优化,并设计采用网络结构重参数化技术以提升图像识别准确率。由实际研究成果可知,所研究算法的车型识别系统,识别准确率得到显著提升,达到98。4%的水平,同时在网络结构重参数化技术支持,图像识别速度也提升至26 ms。
Application Analysis of Vehicle Type Identification System in Nanping Expressway Toll Station
In order to meet the increasing requirements of the current expressway toll station on the model identification system,it is necessary to make full use of modern high-tech optimization of the corresponding system,explore the vehicle classification algorithm based on video image technology,improve the application effectiveness of the vehicle identification system,and provide necessary ideas for improving the efficiency of the expressway toll station.Based on this,the data set construction and vehicle classification network de-sign were analyzed,and the key points of vehicle classification label design and image preprocessing were explored.At the same time,the feature extraction network was explored,and it was proposed to optimize the EfficientNet V2 network,and the network structure reparameterization technology was designed to improve the image recognition accuracy.According to the actual research results,the rec-ognition accuracy of the vehicle type recognition system of the proposed algorithm has been significantly improved,reaching 98.4%.At the same time,the image recognition speed has also been improved to 26 ms with the support of network structure reparameterization technology.

expressway toll stationvehicle type identification systemimage processing

陆文新

展开 >

南平福银高速公路有限责任公司,福建 南平 354300

高速公路收费站 车型识别系统 图像处理

2024

黑龙江交通科技
黑龙江省交通科学研究所,黑龙江省交通科技情报总站

黑龙江交通科技

影响因子:0.977
ISSN:1008-3383
年,卷(期):2024.47(12)