首页|基于AnyLogic的地铁车站可预见性大客流组织优化方案

基于AnyLogic的地铁车站可预见性大客流组织优化方案

扫码查看
地铁作为城市公共交通关键部分,常因大型活动面临远超日常的客流压力,这对地铁运营效率和乘客安全构成严峻考验。针对地铁车站可预见性的大客流挑战,利用仿真软件构建客流仿真模型。通过数据收集、环境建模、行为流程建模及仿真运行,成功模拟了车站运营情况。基于乘客需求特征,提出了优化进站流线、调整闸机布局等方案,旨在减少拥堵、提升运营效率。通过仿真实验,对比分析不同方案的效果,并确定最优方案。结果表明:最优方案能显著降低乘客等待时间,改善车站拥堵状况,提高疏散效率。
AnyLogic-based Optimization Scheme for Predictable Large Passenger Flow Organization in Subway Station
As a key part of urban public transportation,the subway often faces much greater passenger flow pressure than usual due to large-scale events,which poses a severe challenge to the operational efficiency and passenger safety of the subway.A passenger flow simulation model was constructed using simulation software to address the challenge of high passenger flow predictability in subway sta-tions.Through data collection,environmental modeling,behavior process modeling,and simulation operation,the station operation situa-tion was successfully simulated.Based on the characteristics of passenger demand,solutions have been proposed to optimize the in-bound flow line and adjust the layout of turnstiles,aiming to reduce congestion and improve operational efficiency.Through simulation experiments,compare and analyze the effects of different schemes,and determine the optimal scheme.Research has shown that the opti-mal solution can significantly reduce passenger waiting time,improve station congestion,and enhance evacuation efficiency.

subway stationslarge passenger flow organizationsimulation run

刘晓静、张晨熙

展开 >

无锡机电高等职业技术学校,江苏 无锡 214000

无锡地铁运营有限公司,江苏 无锡 214000

地铁车站 大客流组织 仿真运行

2024

黑龙江交通科技
黑龙江省交通科学研究所,黑龙江省交通科技情报总站

黑龙江交通科技

影响因子:0.977
ISSN:1008-3383
年,卷(期):2024.47(12)