首页|基于改进DAB-DETR算法的车辆行人检测研究

基于改进DAB-DETR算法的车辆行人检测研究

扫码查看
针对背景复杂与尺度变化较大情况下车辆行人目标检测精度不高、容易出现错检及漏检问题提出一种改进DAB-DETR算法的车辆行人目标检测算法,采用SIoU损失函数优化预测边界框,将小目标的检测误差放大,从而更好地处理小目标检测问题.引入GELU激活函数增强算法的泛化能力,提高算法在复杂背景及遮挡情况下的检测性能.实验结果表明,改进后的算法较原DAB-DETR 算法在召回率和平均精度均值上分别提高了 2.6%和8.3%,验证了改进方法的有效性,为复杂场景下车辆行人目标检测提供了算法支持.
Vehicle Pedestrian Detection Based on Improved DAB-DETR Algorithm
Aiming at the problem of low accuracy of vehicle and pedestrian target detection under complex background and large scale changes,and the problem of insensitive detection and easy occurrence of false alarms and missed detection,the study proposes a vehicle and pedestrian target detection algorithm based on improved DAB-DETR algorithm.SIoU loss function is used to optimize the predicted bounding box,and the detection error of small targets is amplified to better deal with the problem of small target detection.GELU activation function is introduced to enhance the algorithm's generalization ability and improve its detection performance under complex background and occlusion.Experimental results show that the improved algorithm has increased the recall rate and average precision by 2.6%and 8.3%respectively compared with the original DAB-DETR algorithm,which verifies the effectiveness of the improvement method and provides algorithm support for vehicle and pedestrian target detection in complex scenarios.

Vehicular pedestrain detectionDAB-DETR algorithmGELU activation functionSIoU loss function

王士刚、程鹏

展开 >

华北水利水电大学数学与统计学院,郑州 450046

车辆行人检测 DAB-DETR算法 GELU激活函数 Siou损失函数

2025

黑龙江科学
黑龙江省科学院

黑龙江科学

影响因子:1.014
ISSN:1674-8646
年,卷(期):2025.16(2)