首页|GWO和LSSVM混合算法对空气质量的预测研究

GWO和LSSVM混合算法对空气质量的预测研究

扫码查看
针对空气质量受多种因素影响预测难度大的问题,提出一种灰狼算法(GWO)优化最小二乘支持向量机(LSSVM)的空气质量预测模型,该模型利用灰狼算法对最小二乘支持向量机的核函数和惩罚因子进行迭代寻优,减少参数选择的盲目性,提高预测精度.为了验证该模型的优越性,将其预测结果与最小二乘支持向量机、遗传算法优化最小二乘支持向量机和BP神经网络的预测结果进行比较.结果表明:①相对于传统的单一预测模型,混合预测模型的拟合优度更好.②在混合模型中灰狼算法优化最小二乘支持向量机的拟合优度高于遗传算法优化最小二乘支持向量机的拟合优度.因此,灰狼算法优化最小二乘支持向量机对空气质量指数的预测具有现实利用价值.
Research on Air Quality Prediction Based on the Hybrid Algorithm of GWO and LSSVM
The study proposes an air quality prediction model based on Grey Wolf Optimizer(GWO)optimizing Least Squares Support Vector Machine(LSSVM),aiming at the problem that air quality is influenced by multiple factors and the prediction is difficult.This model uses the GWO to iteratively optimize the kernel function and penalty factor of the LSSVM,reduce the blindness of parameter selection and improve the prediction accuracy.Meanwhile,to verify the superiority of this model,its prediction results are compared with those of LSSVM,Genetic Algorithm optimizing LSSVM and BP Neural Network.The results show that:① Compared with traditional single prediction models,the goodness of fit of the hybrid prediction model is better.② Among the hybrid models,the goodness of fit of GWO optimizing LSSVM is higher than that of Genetic Algorithm optimizing LSSVM.Therefore,GWO optimizing LSSVM has practical application value for the prediction of air quality index.

ZhengzhouAir qualityGrey Wolf AlgorithmLeast Squares Support Vector Machine

位传宁、程鹏

展开 >

华北水利水电大学数学与统计学院,郑州 450046

郑州 空气质量 灰狼算法 最小二乘支持向量机

2025

黑龙江科学
黑龙江省科学院

黑龙江科学

影响因子:1.014
ISSN:1674-8646
年,卷(期):2025.16(2)