首页|基于深度学习的信息抽取模型研究

基于深度学习的信息抽取模型研究

扫码查看
对信息抽取中的关系抽取展开研究,针对现有关系抽取技术中存在的难以捕捉文本间更深层次语义信息的问题提出基于深度学习的信息抽取模型,使用BERT模型进行词向量嵌入,通过图卷积网络构建依存关系图,利用注意力机制为不同特征分配不同权重,Softmax完成关系分类,实现关系的抽取,在DocRED数据集上与5个基准模型做实验对比,证明所提模型的F1值最优,说明该模型能够提高抽取的准确度.
Research on Information Extraction Model Based on Deep Learning
The study analyzes the relationship extraction in information extraction,and proposes an information extraction model based on deep learning to solve the problem that it is difficult to capture deeper semantic information between texts in existing relationship extraction technologies.Then the study conducts word vector embedding with BERT model and dependency graph through graph convolutional network,assigns different weights to different features with attention mechanism,completes the relationship classification by Softmax,realizes the relationship extraction,and conducts experimental comparison with 5 benchmark models in DocRED dataset.F1 value of the proposed model is proved to be the best,indicating that the model can improve the accuracy of extraction.

Relationship extractionGraph convolutional networkAttention mechanismBERT

王忠义

展开 >

山东华宇工学院,山东德州 253000

关系抽取 图卷积网络 注意力机制 BERT

2025

黑龙江科学
黑龙江省科学院

黑龙江科学

影响因子:1.014
ISSN:1674-8646
年,卷(期):2025.16(2)