首页|基于机器学习的云计算资源调度方法研究

基于机器学习的云计算资源调度方法研究

扫码查看
针对云计算资源调度方法中存在的资源调度效率低、收敛性能差等问题提出一种基于机器学习的云计算资源调度算法,改进经典粒子群算法,通过混沌策略优化种群粒子分布,加入模拟退火算法的转移概率,降低陷入局部最优解的风险.将该算法应用于云资源调度中,与两个经典算法进行仿真实验,证实了该方法能够提高资源调度效率及收敛性能.
Research on Cloud Computing Resource Scheduling Method Based on Machine Learning
There are some problems in cloud computing resource scheduling methods:the low efficiency of resource scheduling and poor convergence performance,etc.The study proposes a cloud computing resource scheduling algorithm based on machine learning,improves the classical particle swarm optimization algorithm,optimizes the population particle distribution through chaotic strategy,adds the transfer probability of simulated annealing algorithm,and reduces the risk of falling into the local optimal solution.Then the study applies algorithm to cloud resource scheduling,and conducts simulation experiments with two classical algorithms.This proves that the proposed method can improve the efficiency of resource scheduling and convergence performance.

Cloud computingResource schedulingParticle swarmChaotic strategySimulated annealing

黄静

展开 >

江苏联合职业技术学院苏州分院苏州高等职业技术学校,江苏苏州 215000

云计算 资源调度 粒子群 混沌策略 模拟退火

2025

黑龙江科学
黑龙江省科学院

黑龙江科学

影响因子:1.014
ISSN:1674-8646
年,卷(期):2025.16(2)