首页|基于深度学习的网络流量异常检测算法研究

基于深度学习的网络流量异常检测算法研究

扫码查看
深度学习技术在网络流量异常检测中应用广泛,其利用深度神经网络挖掘数据之间的潜在关联性,从而有效检测出不符合网络行为的攻击和入侵行为.针对网络流量异常检测中的多类别不平衡异常数据检测问题提出一种网络流量入侵检测算法NECP,以提高对不平衡网络流量的识别.通过实验证明NECP在保持计算效率的同时能够显著提高网络流量的异常检测精度,为保障网络安全提供了新颖有效的解决方案,推动了该领域的进一步发展.
Research on Anomaly Detection Algorithm of Network Traffic Based on Deep Learning
Deep learning technology is widely used in network traffic anomaly detection,which uses deep neural network to mine the potential correlation between data,so as to effectively detect attacks and intrusions that do not meet the network behavior.A network traffic intrusion detection algorithm NECP is proposed to improve the identification of unbalanced network traffic in order to detect unbalanced network traffic.The experiment proves that NECP can maintain the computational efficiency,significantly improve the anomaly detection accuracy of network traffic,so as to provide a novel and effective solution for ensuring network security,and promote the further development of this field.

Deep learningNetwork trafficAnomaly detectionNetwork security

冷秋君

展开 >

武汉市常青第一中学,武汉 430024

深度学习 网络流量 异常检测 网络安全

2025

黑龙江科学
黑龙江省科学院

黑龙江科学

影响因子:1.014
ISSN:1674-8646
年,卷(期):2025.16(2)