首页|基于机器学习的轮式机器人关节爬坡运动轨迹控制方法

基于机器学习的轮式机器人关节爬坡运动轨迹控制方法

扫码查看
轮式机器人在爬坡运动中势能和动能受斜坡环境影响较大,关节运动角度和关节作用力难以控制,导致轨迹控制出现偏差.为了提高轮式机器人关节轨迹控制效果,提出基于机器学习的轮式机器人关节轨迹控制方法.分析机器人在斜坡运动不同阶段的势能和动能,建立机器人动力学方程;将机器人与智能自动控制系统结合;设计机器学习算法,优化关节运动控制策略,实现轮式机器人爬坡过程中的关节轨迹高精度控制.实验结果表明:所提方法控制下的机器人在爬坡过程中,关节运动角度偏差低于2°,目标作用力偏差低于2N,提高了关节轨迹控制的效果.
Control Method for Joint Climbing Trajectory of Wheeled Robots Based on Machine Learning
The potential energy and kinetic energy of wheeled robots are greatly affected by the slope environment during climbing,and the joint motion angle and joint force are difficult to control,which leads to deviation in trajectory control.In order to improve the joint trajectory control effect of wheeled robots,a joint trajectory control method of wheeled robots based on machine learning is proposed.It analyzes the potential energy and kinetic energy of the robot at different stages of slope movement,and establishes the dynamic equation of the robot,combines the robot with the intelligent automatic control system.The machine learning algo-rithm is designed to optimize the joint motion control strategy and achieve high-precision control of the joint trajectory during the climbing process of the wheeled robot.The experimental results show that the joint motion angle deviation is less than 2ºand the target force deviation is less than 2 N during the climbing process of the robot controlled by the proposed method,which im-proves the joint trajectory control effect.

wheeled robotdynamic equationautomatic controlmachine learningclimbing track controlcontrol accuracy

赵丹

展开 >

吉林市体育运动学校,吉林 吉林 132001

轮式机器人 动力学方程 自动控制 机器学习 爬坡轨迹控制 控制精度

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)