首页|基于改进粒子群算法的火电厂发电成本控制模型

基于改进粒子群算法的火电厂发电成本控制模型

扫码查看
为控制火电厂发电成本,构建基于改进粒子群算法的火电厂发电成本控制模型.设计火电厂发电成本双层控制模型,上层以电煤价格预测结果为依据,根据供应商供货能力、煤炭价格、库存限制等条件,构建火电厂多周期采购计划的成本控制模型;下层以生产可用燃煤的数量与种类为基础,构建经济混煤掺烧方案的成本控制模型.以多项成本为约束条件,基于改进粒子群算法求解模型.测试结果表明,该模型能够实现入炉标单价格与总成本的降低,其中6月的总成本降低了3 675.32万元,以及能够实现边际燃煤成本的降低,说明模型有很大实用意义.
Power Generation Cost Control Model for Thermal Power Plants Based on Improved Particle Swarm Optimization
In order to control the power generation cost of thermal power plant,a power generation cost control model of thermal power plant based on improved particle swarm optimization algorithm is established.It designs a two-level control model of power gen-eration cost in thermal power plants.The upper level is based on the forecast result of thermal coal price,and the cost control model of multi-cycle procurement plan in thermal power plants is constructed according to the supplier's supply capacity,coal price,inventory restrictions and other conditions.Based on the quantity and types of coal available for lower production,the cost control model of economic blended coal combustion scheme is constructed.Taking multiple costs as constraints,the model is solved based on improved particle swarm optimization.The test results show that the model can achieve the reduction of the bid price and total cost,in which the total cost in June decreased by 3 675.32 million yuan,and the marginal coal cost can be reduced,which shows that the model has great practical significance.

Improved Particle Swarm Algorithmdecision cyclethermal power plantpower generation cost controlmodel

黄常抒、陈鹏飞、王群、龙建平、李德忠

展开 >

国能粤电台山发电有限公司,广东 台山 529228

湖南大唐先一科技有限公司,湖南 长沙 410007

改进粒子群算法 决策周期 火电厂 发电成本控制 模型

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)