首页|基于改进神经网络的铁轨抗压强度预测研究

基于改进神经网络的铁轨抗压强度预测研究

扫码查看
为了提高铁轨抗压强度预测精度和效率,提出基于改进神经网络的铁轨抗压强度预测方法.通过经验模态分解方法提取铁轨振动信号;通过小波分解对铁轨振动信号实行降噪处理;结合线性回归和模糊度函数改进神经网络,获取更有效的隶属度函数,构建铁轨抗压强度预测模型;基于FCM算法通过离散化处理进行振动信号属性约简,并完成铁轨抗压强度的预测.实验结果表明,所提方法的铁轨抗压强度预测结果误差低于2 MPa,预测时间在25 min左右,提高了预测精度和预测效率,具有较好的实际应用价值.
Research on the Iron Rail Compressive Stress Inspection Based on Improvement of Neural Networks
In order to improve the accuracy and efficiency of railway track compressive strength prediction,an improved neural network based railway track compressive strength prediction method is proposed.The rail vibration signal is extracted by empirical mode decomposition.The noise of rail vibration signal is reduced by wavelet decomposition.Combined with linear regression and fuzzy function,the neural network is improved to obtain more effective membership function,and a prediction model of railway track compressive strength is constructed.Based on FCM algorithm,attribute reduction of vibration signal is carried out through discretization processing,and the compressive strength of rail is predicted.The experimental results show that the prediction er-ror of the rail compressive strength of the proposed method is less than 2 MPa,and the prediction time is about 25 min,which im-proves the prediction accuracy and prediction efficiency,and has good practical application value.

improved neural network modelprediction of pressure resistancerailroad trackexperience modular decompositionwavelet decompositionattribute reduction

尹轶

展开 >

国能黄大铁路有限责任公司,山东 东营 257000

改进神经网络模型 抗压强度预测 铁轨 经验模态分解 小波分解 属性约简

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)