首页|基于行为画像数据挖掘的异常流量监测技术

基于行为画像数据挖掘的异常流量监测技术

Abnormal Traffic Monitoring Technology Based on Behavior Portrait Data Mining

扫码查看
针对现有网络异常流量检测方法存在的识别率低、丢包率高的问题,基于行为画像数据挖掘算法,对异常流量监测技术展开研究.通过行为画像数据挖掘处理采集的流量数据,删除冗余数据对有效的特征数据进行映射,并经过融合计算得到新的特征数据集,设定一个异常行为阈值,引入显露模式建立异常规则,根据阈值的变化实现对异常流量的实时监测.实验结果表明:面对网络攻击情况,提出的基于行为画像数据挖掘的异常流量监测技术依然保持着高水平的识别正确率,并且数据丢包率低,说明该监测技术安全性得到了提升.
In response to the problems of low recognition rate and high packet loss rate in existing network abnormal traffic detection meth-ods,research is conducted on abnormal traffic monitoring technology based on behavioral profiling data mining algorithms.It processes the collected traffic data through behavior profiling data mining,deletes redundant data to map effective feature data,and obtains a new feature dataset through fusion calculation.It also sets an abnormal behavior threshold,introduces exposure pat-terns to establish abnormal rules,and achieves real-time monitoring of abnormal traffic based on changes in the threshold.The ex-perimental results show that in the face of network attacks,the proposed anomaly traffic monitoring technology based on behav-ior profiling data mining still maintains a high level of recognition accuracy,and the data packet loss rate is low,indicating that the security of this monitoring technology has been improved.

behavior portraitdata miningtraffic monitoringdata redundancymulti-feature fusion

王小戈、李凯、王潇

展开 >

中国兵器工业信息中心,北京 100089

行为画像 数据挖掘 流量监测 数据冗余 多特征融合

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)