首页|电力工控网络0day漏洞风险自动识别技术

电力工控网络0day漏洞风险自动识别技术

Automatic Identification Technology for 0day Vulnerability Risk in Power Industrial Control Network

扫码查看
为了准确识别漏洞风险,提出一种电力工控网络0day漏洞风险自动识别方法.将电力工控网络根据需求转换为二维数据,经过归一化处理获取灰度矩阵,采用二维小波阈值去噪方法对数据去噪处理.将常规序列特征提取规则作为基本单元,采用特征提取方法提取电力工控网络0day漏洞风险特征,构建特征集合,将集合中的全部数据映射到二维平面上,通过维诺图区分数据,实现电力工控网络0day漏洞风险自动识别.实验结果表明,所提方法可以有效提升漏洞风险自动识别结果的准确性,同时还能够有效缩短识别时间.
In order to accurately identify vulnerability risks,an automatic identification method for 0day vulnerability risks in power indus-try control networks is proposed.It converts the power industry control network into two-dimensional data according to require-ments,obtains the grayscale matrix through normalization processing,and uses two-dimensional wavelet threshold denoising method to denoise the data.Using conventional sequence feature extraction rules as the basic unit,feature extraction methods are used to extract the 0day vulnerability risk features of the power industry control network,and a feature set is constructed.All data in the set is mapped onto a two-dimensional plane,and data is distinguished through a Vinot map to achieve automatic identifica-tion of 0day vulnerability risk in the power industry control network.The experimental results show that the proposed method can effectively improve the accuracy of vulnerability risk automatic identification results,while also effectively reducing identifica-tion time.

power industrial control network0dayvulnerability riskautomatic recognition

胡朝辉、陈善锋、杨逸岳

展开 >

南方电网数字电网研究院股份有限公司,广东 广州 510080

华南理工大学 电子与信息学院,广东 广州 510641

电力工控网络 0day 漏洞风险 自动识别

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)