首页|基于卷积神经网络的分布式光纤温度传感系统

基于卷积神经网络的分布式光纤温度传感系统

Distributed Fiber Optic Temperature Sensing System Based on Convolutional Neural Network

扫码查看
针对地下电缆温度监测问题,提出一种基于卷积神经网络的分布式拉曼温度传感系统.由于拉曼散射光非常弱,因此该系统的信噪比对于系统性能的影响非常大,如何有效地去除噪声目前成了该领域的关键问题.传统去噪方法有的需要对传统传感系统的硬件进行调整,有的消耗时间较长不灵活,都无法较好地且方便地实现去噪功能.提出引用卷积神经网络对大量仿真数据进行学习,然后用仿真数据和真实数据对该训练好的模型进行验证,实验表明,基于卷积神经网络的去噪算法能够有效地去除分布式拉曼温度传感系统的噪声.
For the underground cable temperature monitoring problem,this paper proposes a distributed Raman temperature sensing system based on convolutional neural network,because the Raman scattered light is very weak,so the signal-to-noise ratio of this system has a great impact on the system performance,and how to effectively remove the noise is now become a key problem in this field.Some traditional denoising methods need to adjust the hardware of the traditional sensing system,and some consume longer time and are inflexible,all of which cannot achieve the denoising function better and conveniently.In this paper,it proposes to use Convolutional Neural Network to learn a large amount of simulation data,and then validates the trained model with simulation da-ta and real data.Experiments show that the noise removal algorithm based on Convolutional Neural Network can effectively re-move the noise of distributed Raman temperature sensing system.

distributed fiber sensingRaman scatteringConvolutional Neural Networkdenoising

温思行、全源

展开 >

广东电网公司东莞供电局,广东 东莞 523000

分布式光纤传感 拉曼散射 卷积神经网络 去噪

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)