首页|基于改进迁移学习的红外光谱图像自适应分割研究

基于改进迁移学习的红外光谱图像自适应分割研究

Research on Adaptive Segmentation of Infrared Spectral Images Based on Improved Transfer Learning

扫码查看
为了从红外光谱图像中获取有用信息,设计基于改进迁移学习的红外光谱图像自适应分割方法.采集系统获取红外光谱图像,采用直方图均衡技术对红外光谱图像进行增强处理,依据增强后图像各帧像素的高斯正态分布,重建红外光谱图像,将红外光谱图像重建结果输入双分支卷积神经网络模型,利用迁移学习子网提取红外光谱图像全局特征,结合残差注意力子网提取的图像细小特征;通过集成学习融合差异红外光谱图像特征,输出分割后的红外光谱图像.测试结果表明:该方法可实现红外光谱图像分割,且分割结果清晰,具有显著细节特征.
In order to obtain useful information from infrared spectral images,an adaptive segmentation method based on improved transfer learning is designed.The acquisition system obtains the infrared spectral image,uses histogram equalization technology to en-hance the infrared spectral image,reconstructs the infrared spectral image according to the Gaussian normal distribution of each frame pixel of the enhanced image,inputs the infrared spectral image reconstruction results into the two branch convolution neu-ral network model,uses the migration learning subnet to extract the global characteristics of the infrared spectral image,and com-bines the small features of the image extracted by the residual attention subnet.Through integrated learning and fusion of differ-ent infrared spectral image features,the segmented infrared spectral image is output.The test results show that this method can achieve infrared spectral image segmentation,and the segmentation results are clear,with significant details.

improved transfer learninginfrared spectral imageadaptive segmentationdouble branched convolutionresidual attentionthe spread of smooth

陈静、徐伟、张磊

展开 >

国网扬州供电公司,江苏 扬州 225000

改进迁移学习 红外光谱图像 自适应分割 双分支卷积 残差注意力 扩散平滑

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)