首页|一种轻量化模型的手指静脉识别技术

一种轻量化模型的手指静脉识别技术

扫码查看
为了提高卷积神经网络识别手指静脉的能力,提出了一种结合通道重要性的MobileNet网络.具体而言,对MobileNet提取的特征进行信道重要性分析,对不重要的特征信道进行压缩,提高网络特征表示能力.同时,利用三重态损失提取的网络模型具有类间分布和类内紧密性的特点,提高了网络模型的判别能力.在MultiView-FV静脉数据集上进行了实验,结果表明该方法是有效的.
A lightweight Model of Finger Vein Recognition Technology
In order to improve the ability of convolutional neural networks to recognize finger veins,a MobileNet network combining the importance of channels is proposed.Specifically,the channel importance analysis is carried out on the features extracted by Mo-bileNet,and the less important feature channels are compressed to improve the capability of network feature representation.At the same time,the network model extracted by triplet loss has the characteristics of inter-class distribution and intra-class tight-ness,which improves the discriminant ability of the network model.Experiments are carried out on MultiView-FV venous datas-et,and the results show that the method is effective.

finger vein recognitionLightweight modelMobileNet

杨东亮、宋昌江

展开 >

黑龙江省科学院智能制造研究所,黑龙江 哈尔滨 150090

手指静脉识别 轻量化模型 MobileNet

2025

自动化技术与应用
中国自动化学会 黑龙江省自动化学会 黑龙江省科学院自动化研究所

自动化技术与应用

影响因子:0.316
ISSN:1003-7241
年,卷(期):2025.44(1)