首页|基于深度学习的冠状动脉CT图像分割算法研究

基于深度学习的冠状动脉CT图像分割算法研究

扫码查看
为了更好地协助医生对冠状动脉疾病做出诊断,提升诊断冠状动脉 CT 图像的分割精度,研究了 3 种深度学习网络模型算法 Transformer、DeepLab V3+和 U-Net.首先对冠状动脉图片进行增强、去噪、归一化等预处理操作,以降低分割难度;然后分别利用这 3 种深度学习网络模型算法对冠状动脉图像进行像素级分割,并对比它们的分割效果.Transformer模型在 PA、MPA和 MIoU 3 个评价指标上均具备最优性能,在医学图像分割精度,尤其是精细边界区域分割方面有较大优势.实验验证,Transformer模型有效可行,同等测试条件下显著优于 DeepLab V3+和U-Net模型.
Research on Coronary CT Image Segmentation Algorithm Based on Deep Learning
To assist doctors in diagnosing coronary artery diseases better and improve the segmentation accuracy of coronary CT images,three deep learning network models,Transformer,DeepLab V3+and U-Net,were studied.First,the coronary images were preprocessed with enhancement,denoising and normalization to reduce segmenta-tion difficulty.Then,three deep learning network models were used to perform pixel-level segmentation of coronary images,and their segmentation effects were compared.The Transformer model achieved the best performance in PA,MPA,and MIoU evaluation metrics,demonstrating significant advantages in the accuracy of medical image segmentation,especially in fine boundary area segmentation.Experiment results show that this method is effective and feasible,significantly outperforming the DeepLab V3+and U-Net models in the same conditions.

coronary artery diseaseimage segmentationTransformerDeepLab V3+U-Net

郭改文、吴笛鸣、王楠

展开 >

河南财政金融学院 计算机与人工智能学院,河南 郑州 450046

中国地质大学 计算机学院,湖北 武汉 430000

河南硅烷科技发展股份有限公司,河南 许昌 461000

冠状动脉疾病 图像分割 Transformer DeepLab V3+ U-Net

教育部中国高校产学研创新基金蓝点分布式计算项目河南省科技攻关项目河南省重点学科计算机科学与技术资助(2023-2027)

2021LDA11001232102220022

2024

河南教育学院学报(自然科学版)
河南教育学院

河南教育学院学报(自然科学版)

影响因子:0.517
ISSN:1007-0834
年,卷(期):2024.33(3)