河南农业科学2024,Vol.53Issue(2) :144-151.DOI:10.15933/j.cnki.1004-3268.2024.02.016

基于高光谱成像技术的鲜烟叶叶位识别方法

Identification Method of Green Tobacco Leaf Positions Based on Hyperspectral Imaging Technology

李粉粉 王爱霞 赵晨 白涛 毛岚 张豹林 李生栋 宋朝鹏 王涛
河南农业科学2024,Vol.53Issue(2) :144-151.DOI:10.15933/j.cnki.1004-3268.2024.02.016

基于高光谱成像技术的鲜烟叶叶位识别方法

Identification Method of Green Tobacco Leaf Positions Based on Hyperspectral Imaging Technology

李粉粉 1王爱霞 2赵晨 2白涛 3毛岚 3张豹林 3李生栋 3宋朝鹏 1王涛4
扫码查看

作者信息

  • 1. 河南农业大学 烟草学院,河南 郑州 450002
  • 2. 河南中烟工业有限责任公司,河南 郑州 450016
  • 3. 云南省烟草公司曲靖市公司,云南 曲靖 655000
  • 4. 河南农业大学 烟草学院,河南 郑州 450002;云南省烟草公司曲靖市公司,云南 曲靖 655000
  • 折叠

摘要

为实现鲜烟叶叶位的快速无损识别,以不同着生部位烟叶为研究对象,应用高光谱成像技术,构建基于特征光谱的鲜烟叶叶位判别模型.首先,利用标准正态变换(SNV)、二阶导数(2ND)、Savitzky-Golay卷积平滑(SG)和多元散射校正(MSC)4种光谱预处理方法对烟叶原始高光谱数据进行处理,然后采用预处理后的全波段光谱数据和特征波段光谱数据,构建基于支持向量机(SVM)、偏最小二乘判别分析(PLS-DA)和反向传播神经网络(BPNN)的鲜烟叶叶位识别模型.结果表明:采用SG滤波预处理和BPNN所构建的模型识别效果最好,训练集和预测集的预测准确率分别为91.15%和90.63%.此外,利用竞争性自适应重加权算法(CARS)所筛选的特征波长所建立的BPNN模型最优,训练集和预测集的预测准确率达到了93.23%和92.19%.表明利用高光谱成像技术判别鲜烟叶所属部位是可行的,可以实现鲜烟叶所属部位快速、无损检测.

Abstract

s:In order to realize the rapid non-destructive identification of fresh tobacco leaf position,this study took tobacco leaves with different leaf positions as the research object,applied hyperspectral imaging technology to construct a fresh tobacco leaf position discrimination model based on characteristic spectrum.We processed the original hyperspectral data of tobacco leaves by using SNV(standard normal variate),2ND(2nd derivative),SG(Savitzky-Golay smoothing filter)and MSC(multiplicative scatter correction)four spectral preprocessing methods,and used the preprocessed full-band spectral data and characteristic band spectral data to construct fresh tobacco leaf position recognition models based on SVM(support vector machines),PLS-DA(partial least squares-discriminant analysis,PLS-DA)and BPNN(back propagation neural network).The results showed that the model constructed by SG filter preprocessing and BPNN had the best recognition effect,and the discrimination results of the training set and prediction set were 91.15%and 90.63%,respectively.In addition,the BPNN model established by using the characteristic wavelengths screened by CARS was the best,and the prediction accuracy of the training set and prediction set reached 93.23%and 92.19%.This study shows that it is feasible to use hyperspectral imaging technology to identify the parts of fresh tobacco leaves,which can realize rapid and nondestructive detection of the parts of fresh tobacco leaves.

关键词

烟叶/叶位/无损识别/高光谱成像/光谱特征

Key words

Tobacco leaf/Leaf position/Nondestructive testing/Hyperspectral imaging/Spectral characteristics

引用本文复制引用

基金项目

中国烟草总公司科技重点研发项目(110202102007)

中国烟草总公司云南省公司资助项目(2021530000241036)

出版年

2024
河南农业科学
河南省农业科学院

河南农业科学

CSTPCD北大核心
影响因子:0.787
ISSN:1004-3268
参考文献量25
段落导航相关论文