首页|基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究

基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究

扫码查看
为了实现复杂自然背景下虫咬紫金蝉茶的快速、准确识别,提出了一种基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法。首先在YOLOv5s的主干网络中添加SE注意力机制以增强模型特征提取的能力,降低复杂背景对茶叶特征提取时的干扰;然后采用通道剪枝算法对模型进行剪枝并进行微调,实现虫咬紫金蝉茶叶片的快速、准确检测。结果表明,修剪后的模型相比原YOLOv5s模型,参数量减少60。1%,帧率提升18。6%,运算量减少29。7%,平均精度均值(mAP)为81。3%。
Research on Insect-bitten Zijin Tea Detection Method Based on YOLOv5s-SE and Channel Pruning
In order to achieve rapid and accurate identification of insect-bitten Zijin tea leaves in complex nature backgrounds,a detection method for Zijin tea based on YOLOv5s-SE and channel pruning was proposed.Firstly,SE modules were added to the backbone network of YOLOv5s to enhance the model's feature extraction capability and reduce interference from complex backgrounds during tea leaf feature extraction.Then,a channel pruning algorithm was used to prune the model and fine-tuning was conducted,enabling fast and accurate detection of insect-bitten Zijin tea leaves.Compared to YOLOv5s,the test results showed that the pruned model reduced parameters by 60.1%,improved FPS by 18.6%,reduced GFLOPs by 29.7%,and achieved mAP of 81.3%.

TeaObject detectionChannel pruningAttention mechanismDeep learning

戴佳兵、宋春芳、凌彩金、李臻锋、孙崇高

展开 >

江南大学机械工程学院/江苏省食品先进制造装备技术重点实验室,江苏无锡 214122

广东省农业科学院茶叶研究所/广东省茶树资源创新利用重点实验室,广东广州 510640

山东碧海包装材料有限公司,山东临沂 276600

茶叶 紫金蝉茶 目标检测 通道剪枝 注意力机制 深度学习

广东省现代农业产业技术体系建设项目茶叶创新团队建设项目河源市科技计划紫金县科技计划(2024)

2023KJ120河科2021030

2024

河南农业科学
河南省农业科学院

河南农业科学

CSTPCD北大核心
影响因子:0.787
ISSN:1004-3268
年,卷(期):2024.53(5)