首页|基于光合有效吸收的水稻穗生物量遥感估测

基于光合有效吸收的水稻穗生物量遥感估测

扫码查看
受水稻抽穗后冠层几何和光谱特征复杂性的影响,基于传统植被指数的遥感方法难以对水稻稻穗的生物量进行精确估算。基于无人机平台获取的光合有效辐射区域吸收系数,通过分析水稻抽穗后对不同波段光合有效辐射吸收能力的变化,建立基于光合有效吸收的穗生物量估测模型。结果表明,基于蓝红吸收差值指数建立的模型相较于传统的植被指数经验模型对穗生物量有更优的估算精度,对于2018年海南试验田获取的数据,该模型的决定系数(R2)为0。83,均方根误差(RMSE)为147。50 g/m2,变异系数(CV)为10。19%,跨年跨地测试的R2为0。72,证明该模型具有良好的迁移能力。因此,基于光合有效吸收的穗生物量估测模型实现了稻穗生物量的遥感准确估测,有助于提升农作物大面积估产精度与估产效率。
Estimation of Rice Panicle Biomass by Remotely Sensed Photosynthetically Active Absorption
Due to the complexity of canopy geometry and spectral characteristics,the traditional vegetation index inversion method is difficult to estimate the biomass of rice panicle.Based on the absorption coefficient of photosynthetically active radiation obtained by the UAV platform,this paper established a remote model for estimating panicle biomass based on photosynthetically active absorption by analyzing the change of the photosynthetically active radiation absorption capacity in different spectral regions during rice post-heading period.The results showed that compared with the traditional empirical model using vegetation index,the model using blue-red absorption difference index proposed in this paper had higher accuracy for panicle biomass estimation,with the coefficient of determination of 0.83,the root mean square error of 147.50 g/m2,and the coefficient of variation of 10.19%.Using the calibrated model for validation samples from different year and location,the validation accuracy was quite high with R2 of 0.72,which presented the good migration ability of the model.Therefore,the model can achieve accurate estimation of rice panicle biomass by remotely sensed photosynthetically active absorption,which is helpful to improve the precision and efficiency of crop yield estimation at large scales.

RicePanicle biomassUAV remote sensingPhotosynthetically active radiationAbsorption coefficient

张朝冉、彭漪、杨凯丽、袁宁鸽、黎远金、刘小娟、吴慧丽

展开 >

武汉大学 遥感信息工程学院,湖北 武汉 430079

西安机电信息技术研究所,陕西 西安 710065

武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079

水稻 穗生物量 无人机遥感 光合有效辐射 吸收系数

湖北省重点研发计划项目

2020BBB058

2024

河南农业科学
河南省农业科学院

河南农业科学

CSTPCD北大核心
影响因子:0.787
ISSN:1004-3268
年,卷(期):2024.53(6)
  • 14