首页|基于粒子群算法求解致密砂岩储层孔隙结构分形维数——以鄂尔多斯盆地大宁-吉县地区山西组为例

基于粒子群算法求解致密砂岩储层孔隙结构分形维数——以鄂尔多斯盆地大宁-吉县地区山西组为例

扫码查看
针对只有孔隙度、渗透率等基础测试数据的井难以求取其分形维数的问题,提出一种基于粒子群算法的致密砂岩储层分形维数求解方法.首先对于拥有高压压汞、核磁资料的井,利用汞饱和度法、核磁共振法计算其分形维数值,并将其设置为训练样本;其次对于只有孔渗数据的井,基于粒子群算法(PSO)思想将目标函数定义为孔、渗数据和训练样本数据的偏差平方和,使用8 个岩心样品的孔渗数据进行分形维数计算;最后将计算结果与汞饱和度法和核磁共振法计算结果进行对比分析.结果表明,使用粒子群算法求得的分形维数具有较高精度,该计算过程具有高自动化性、低主观性,该方法可在分形维数参数求解计算中推广应用.
Particle swarm optimization algorithm for solving fractal dimension of tight sandstone reservoir's pore structure:a case study of the Shanxi Formation in Daning-Jixian area,Ordos Basin
In the cause of solving the problem which is knotty to obtain the fractal-dimension parameter of wells with only basic test data such as porosity and permeability,an approach based on a particle swarm op-timization algorithm(PSO)is planned to resolve the fractal dimension of tight sandstone reservoir's pore structure.Firstly,for wells with nuclear magnetic and high pressure mercury injection data,the fractal di-mension values were calculated by nuclear magnetic resonance method and mercury saturation method,and were set as training samples.Secondly,for wells with only porosity and permeability data,the objective rep-resentation was defined as the sum of the squares of the deviations of porosity and permeability data and training sample data based on the PSO idea,and the porosity and permeability data of 8 core samples were used to calculate the fractal dimension.Finally,the calculated results were compared with those of mercury saturation method and nuclear magnetic resonance method.The results show that the fractal dimension ob-tained by particle swarm optimization algorithm has a high precision,the calculation process has high auto-mation and low subjectivity,and it can be well applied in the calculation of fractal dimension parameters.

fractal dimensionparticle swarm optimization algorithmhigh-pressure mercury injectionnuclear magnetic resonancetight sandstone reservoirporosity and permeability data

孙和美、邢雪杰、刘琦、邓琳、张正朝、杨宏涛、嵇雯

展开 >

西安石油大学地球科学与工程学院,陕西西安 710065

陕西省油气成藏地质学重点实验室,陕西西安 710065

中石油煤层气有限责任公司,陕西西安 715400

分形维数 粒子群算法 高压压汞 核磁共振 致密储层 孔渗数据

2024

石油地质与工程
中国石化河南油田分公司

石油地质与工程

影响因子:0.453
ISSN:1673-8217
年,卷(期):2024.38(3)
  • 17