首页|急性脑梗死患者预后影响因素分析及风险列线图模型构建

急性脑梗死患者预后影响因素分析及风险列线图模型构建

扫码查看
目的 探讨影响急性脑梗死(ACI)患者预后的相关因素,并构建风险列线图模型.方法 选取2020年1月至2023年1月医院收治的170例ACI患者为研究对象,根据预后将患者分为预后良好组和预后不良组.检测两组血清和肽素、骨桥蛋白(OPN)、神经胶质纤维酸性蛋白(GFAP)水平,收集患者临床资料及实验室指标.采用logistic回归分析明确ACI患者预后不良的危险因素,基于独立危险因素构建风险列线图预测模型.采用受试者工作特征(ROC)曲线、Bootstrap法及Calibration曲线评估预测模型的预测效能、区分度及校准度情况.结果 170例患者中70例患者格拉斯哥预后评分(GOS)评分≤3分,预后不良率为41.18%(70/170).预后不良组年龄≥60岁、血小板与淋巴细胞比值(PLR)>2.83、中性粒细胞与淋巴细胞比值(NRL)>130.50、梗死程度(重度)占比及和肽素、OPN、GFAP水平高于预后良好组(P<0.05).logistic 回归分析结果显示,年龄≥ 60 岁、PLR>2.83、NRL>130.50、和肽素>34.26 pmol·L-OPN>7.21 μg·L-1、GFAP>7.51μg·L-1、梗死程度(重度)是影响ACI患者预后不良的独立危险因素(P<0.05).根据logistic回归分析结果构建ACI患者预后预测模型,以Bootstrap法进行验证显示模型区分度好(C-index=0.815);Calibration曲线分析显示拟合度好(Hosmer-Lemeshow x2=1.325,P=0.157).ROC曲线显示预测模型的曲线下面积、灵敏度、特异度、约登指数分别为0.827(95%CI:0.726~0.964)、90.40%、79.30%、70.70%.结论 年龄≥60岁、PLR>2.83、NRL>130.50、和肽素>34.26 pmol·L-1、OPN>7.21 μg·L-1、GFAP>7.51 μg·L-1、梗死程度(重度)均是影响ACI患者预后不良的独立危险因素,据此构建的列线图预测模型具有良好的区分度和校准度,且该模型对ACI患者预后不良的预测效能较高.
Analysis of Prognostic Factors for Patients with Acute Cerebral Infarction and Construction of Risk Column Chart Model
Objective To explore the prognostic factors for patients with acute cerebral infarction(ACI)and to construct a risk column chart model.Methods A total of 170 ACI patients admitted to the hospital from January 2020 to January 2023 were selected as the study objects,and the patients were divided into good prognosis group and poor prognosis group according to the prognosis results.Serum levels of copeptin,osteopontin(OPN)and glial fibrillary acidic protein(GFAP)were detected in the two groups,and clinical data and laboratory indicators were collected.Logistic regression analysis was used to identify the risk factors for poor prognosis in ACI patients,and a prognostic risk nomogram prediction model for ACI patients was constructed based on independent risk factors.Receiver operating characteristic(ROC)curve,Bootstrap method and Calibration curve were used to evaluate the prediction efficiency,differentiation and calibration of the prediction model.Results Among the 170 patients,70 had a Glasgow outcome scale(GOS)score of ≤3,with a poor prognosis rate of 41.18%(70/170).The proportion of aged ≥60 years old,platelet to lymphocyte ratio(PLR)>2.83,neutrophil to lymphocyte ratio(NRL)>130.50,infarct degree(severity),and copeptin,OPN,GFAP levels in the poor prognosis group were higher than those in the good prognosis group(P<0.05).Logistic regression analysis showed that aged ≥60 years old,PLR>2.83,NRL>130.50,copeptin>34.26 pmol·L-1,OPN>7.21 μg·L-1,GFAP>7.51 μg·L-1,infarct degree(severity)were independent risk factors for poor prognosis in ACI patients(P<0.05).According to the results of logistic regression analysis,a prognosis prediction model for ACI patients was constructed,and the model was well differentiated by Bootstrap method(C-index=0.815).Calibration curve analysis showed a good fit(Hosmer-Lemeshow x2=1.325,P=0.157).ROC curve showed that area under the curve,sensitivity,specificity and Jorden index of the prediction model were 0.827(95%CI:0.726-0.964),90.40%,79.30%and 70.70%,respectively.Conclusion Aged ≥ 60 years old,PLR>2.83,NRL>130.50,copeptin>34.26 pmol·L-1,OPN>7.21 μg·L-1,GFAP>7.51 μg·L-1,infarct degree(severity)were all independent risk factors for poor prognosis in ACI patients.The prediction model based on the nomogram has good differentiation and calibration degree,and the model has high predictive efficiency for the occurrence of poor prognosis in ACI patients.

copeptinosteopontinglial fibrillary acidic proteinacute cerebral infarctionnomogram modelprognosis

顿少志、刘畅、王宝玉

展开 >

郑州大学附属郑州中心医院急诊科,河南郑州 450000

和肽素 骨桥蛋白 神经胶质纤维酸性蛋白 急性脑梗死 列线图模型 预后

河南省医学科技攻关计划联合共建项目

LHGJ20230785

2024

河南医学研究
河南省医学科学院

河南医学研究

影响因子:0.979
ISSN:1004-437X
年,卷(期):2024.33(8)
  • 20